Cargando…

3D Porous VO(x)/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide–Chitosan Hydrogels for Superior Supercapacitor Electrode Materials

Three-dimensional porous carbon materials with moderate heteroatom-doping have been extensively investigated as promising electrode materials for energy storage. In this study, we fabricated a 3D cross-linked chitosan-dicyandiamide-VOSO(4) hydrogel using a polymerization process. After pyrolysis at...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Jinghua, He, Xiong, Cai, Jiayang, Zhou, Jie, Liu, Baosheng, Zhang, Shaohui, Sun, Zijun, Su, Pingping, Qu, Dezhi, Li, Yudong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490277/
https://www.ncbi.nlm.nih.gov/pubmed/37688191
http://dx.doi.org/10.3390/polym15173565
_version_ 1785103806934024192
author Liu, Jinghua
He, Xiong
Cai, Jiayang
Zhou, Jie
Liu, Baosheng
Zhang, Shaohui
Sun, Zijun
Su, Pingping
Qu, Dezhi
Li, Yudong
author_facet Liu, Jinghua
He, Xiong
Cai, Jiayang
Zhou, Jie
Liu, Baosheng
Zhang, Shaohui
Sun, Zijun
Su, Pingping
Qu, Dezhi
Li, Yudong
author_sort Liu, Jinghua
collection PubMed
description Three-dimensional porous carbon materials with moderate heteroatom-doping have been extensively investigated as promising electrode materials for energy storage. In this study, we fabricated a 3D cross-linked chitosan-dicyandiamide-VOSO(4) hydrogel using a polymerization process. After pyrolysis at high temperature, 3D porous VO(x)/N-doped carbon nanosheet hybrids (3D VNCN) were obtained. The unique 3D porous skeleton, abundant doping elements, and presence of VO(x) 3D VNCN pyrolyzed at 800 °C (3D VNCN-800) ensured excellent electrochemical performance. The 3D VNCN-800 electrode exhibits a maximum specific capacitance of 408.1 F·g(−1) at 1 A·g(−1) current density and an admirable cycling stability with 96.8% capacitance retention after 5000 cycles. Moreover, an assembled symmetrical supercapacitor based on the 3D VNCN-800 electrode delivers a maximum energy density of 15.6 Wh·Kg(−1) at a power density of 600 W·Kg(−1). Our study demonstrates a potential guideline for the fabrication of porous carbon materials with 3D structure and abundant heteroatom-doping.
format Online
Article
Text
id pubmed-10490277
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104902772023-09-09 3D Porous VO(x)/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide–Chitosan Hydrogels for Superior Supercapacitor Electrode Materials Liu, Jinghua He, Xiong Cai, Jiayang Zhou, Jie Liu, Baosheng Zhang, Shaohui Sun, Zijun Su, Pingping Qu, Dezhi Li, Yudong Polymers (Basel) Article Three-dimensional porous carbon materials with moderate heteroatom-doping have been extensively investigated as promising electrode materials for energy storage. In this study, we fabricated a 3D cross-linked chitosan-dicyandiamide-VOSO(4) hydrogel using a polymerization process. After pyrolysis at high temperature, 3D porous VO(x)/N-doped carbon nanosheet hybrids (3D VNCN) were obtained. The unique 3D porous skeleton, abundant doping elements, and presence of VO(x) 3D VNCN pyrolyzed at 800 °C (3D VNCN-800) ensured excellent electrochemical performance. The 3D VNCN-800 electrode exhibits a maximum specific capacitance of 408.1 F·g(−1) at 1 A·g(−1) current density and an admirable cycling stability with 96.8% capacitance retention after 5000 cycles. Moreover, an assembled symmetrical supercapacitor based on the 3D VNCN-800 electrode delivers a maximum energy density of 15.6 Wh·Kg(−1) at a power density of 600 W·Kg(−1). Our study demonstrates a potential guideline for the fabrication of porous carbon materials with 3D structure and abundant heteroatom-doping. MDPI 2023-08-28 /pmc/articles/PMC10490277/ /pubmed/37688191 http://dx.doi.org/10.3390/polym15173565 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Liu, Jinghua
He, Xiong
Cai, Jiayang
Zhou, Jie
Liu, Baosheng
Zhang, Shaohui
Sun, Zijun
Su, Pingping
Qu, Dezhi
Li, Yudong
3D Porous VO(x)/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide–Chitosan Hydrogels for Superior Supercapacitor Electrode Materials
title 3D Porous VO(x)/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide–Chitosan Hydrogels for Superior Supercapacitor Electrode Materials
title_full 3D Porous VO(x)/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide–Chitosan Hydrogels for Superior Supercapacitor Electrode Materials
title_fullStr 3D Porous VO(x)/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide–Chitosan Hydrogels for Superior Supercapacitor Electrode Materials
title_full_unstemmed 3D Porous VO(x)/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide–Chitosan Hydrogels for Superior Supercapacitor Electrode Materials
title_short 3D Porous VO(x)/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide–Chitosan Hydrogels for Superior Supercapacitor Electrode Materials
title_sort 3d porous vo(x)/n-doped carbon nanosheet hybrids derived from cross-linked dicyandiamide–chitosan hydrogels for superior supercapacitor electrode materials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490277/
https://www.ncbi.nlm.nih.gov/pubmed/37688191
http://dx.doi.org/10.3390/polym15173565
work_keys_str_mv AT liujinghua 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials
AT hexiong 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials
AT caijiayang 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials
AT zhoujie 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials
AT liubaosheng 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials
AT zhangshaohui 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials
AT sunzijun 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials
AT supingping 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials
AT qudezhi 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials
AT liyudong 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials