Cargando…
3D Porous VO(x)/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide–Chitosan Hydrogels for Superior Supercapacitor Electrode Materials
Three-dimensional porous carbon materials with moderate heteroatom-doping have been extensively investigated as promising electrode materials for energy storage. In this study, we fabricated a 3D cross-linked chitosan-dicyandiamide-VOSO(4) hydrogel using a polymerization process. After pyrolysis at...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490277/ https://www.ncbi.nlm.nih.gov/pubmed/37688191 http://dx.doi.org/10.3390/polym15173565 |
_version_ | 1785103806934024192 |
---|---|
author | Liu, Jinghua He, Xiong Cai, Jiayang Zhou, Jie Liu, Baosheng Zhang, Shaohui Sun, Zijun Su, Pingping Qu, Dezhi Li, Yudong |
author_facet | Liu, Jinghua He, Xiong Cai, Jiayang Zhou, Jie Liu, Baosheng Zhang, Shaohui Sun, Zijun Su, Pingping Qu, Dezhi Li, Yudong |
author_sort | Liu, Jinghua |
collection | PubMed |
description | Three-dimensional porous carbon materials with moderate heteroatom-doping have been extensively investigated as promising electrode materials for energy storage. In this study, we fabricated a 3D cross-linked chitosan-dicyandiamide-VOSO(4) hydrogel using a polymerization process. After pyrolysis at high temperature, 3D porous VO(x)/N-doped carbon nanosheet hybrids (3D VNCN) were obtained. The unique 3D porous skeleton, abundant doping elements, and presence of VO(x) 3D VNCN pyrolyzed at 800 °C (3D VNCN-800) ensured excellent electrochemical performance. The 3D VNCN-800 electrode exhibits a maximum specific capacitance of 408.1 F·g(−1) at 1 A·g(−1) current density and an admirable cycling stability with 96.8% capacitance retention after 5000 cycles. Moreover, an assembled symmetrical supercapacitor based on the 3D VNCN-800 electrode delivers a maximum energy density of 15.6 Wh·Kg(−1) at a power density of 600 W·Kg(−1). Our study demonstrates a potential guideline for the fabrication of porous carbon materials with 3D structure and abundant heteroatom-doping. |
format | Online Article Text |
id | pubmed-10490277 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104902772023-09-09 3D Porous VO(x)/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide–Chitosan Hydrogels for Superior Supercapacitor Electrode Materials Liu, Jinghua He, Xiong Cai, Jiayang Zhou, Jie Liu, Baosheng Zhang, Shaohui Sun, Zijun Su, Pingping Qu, Dezhi Li, Yudong Polymers (Basel) Article Three-dimensional porous carbon materials with moderate heteroatom-doping have been extensively investigated as promising electrode materials for energy storage. In this study, we fabricated a 3D cross-linked chitosan-dicyandiamide-VOSO(4) hydrogel using a polymerization process. After pyrolysis at high temperature, 3D porous VO(x)/N-doped carbon nanosheet hybrids (3D VNCN) were obtained. The unique 3D porous skeleton, abundant doping elements, and presence of VO(x) 3D VNCN pyrolyzed at 800 °C (3D VNCN-800) ensured excellent electrochemical performance. The 3D VNCN-800 electrode exhibits a maximum specific capacitance of 408.1 F·g(−1) at 1 A·g(−1) current density and an admirable cycling stability with 96.8% capacitance retention after 5000 cycles. Moreover, an assembled symmetrical supercapacitor based on the 3D VNCN-800 electrode delivers a maximum energy density of 15.6 Wh·Kg(−1) at a power density of 600 W·Kg(−1). Our study demonstrates a potential guideline for the fabrication of porous carbon materials with 3D structure and abundant heteroatom-doping. MDPI 2023-08-28 /pmc/articles/PMC10490277/ /pubmed/37688191 http://dx.doi.org/10.3390/polym15173565 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Jinghua He, Xiong Cai, Jiayang Zhou, Jie Liu, Baosheng Zhang, Shaohui Sun, Zijun Su, Pingping Qu, Dezhi Li, Yudong 3D Porous VO(x)/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide–Chitosan Hydrogels for Superior Supercapacitor Electrode Materials |
title | 3D Porous VO(x)/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide–Chitosan Hydrogels for Superior Supercapacitor Electrode Materials |
title_full | 3D Porous VO(x)/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide–Chitosan Hydrogels for Superior Supercapacitor Electrode Materials |
title_fullStr | 3D Porous VO(x)/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide–Chitosan Hydrogels for Superior Supercapacitor Electrode Materials |
title_full_unstemmed | 3D Porous VO(x)/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide–Chitosan Hydrogels for Superior Supercapacitor Electrode Materials |
title_short | 3D Porous VO(x)/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide–Chitosan Hydrogels for Superior Supercapacitor Electrode Materials |
title_sort | 3d porous vo(x)/n-doped carbon nanosheet hybrids derived from cross-linked dicyandiamide–chitosan hydrogels for superior supercapacitor electrode materials |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490277/ https://www.ncbi.nlm.nih.gov/pubmed/37688191 http://dx.doi.org/10.3390/polym15173565 |
work_keys_str_mv | AT liujinghua 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials AT hexiong 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials AT caijiayang 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials AT zhoujie 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials AT liubaosheng 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials AT zhangshaohui 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials AT sunzijun 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials AT supingping 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials AT qudezhi 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials AT liyudong 3dporousvoxndopedcarbonnanosheethybridsderivedfromcrosslinkeddicyandiamidechitosanhydrogelsforsuperiorsupercapacitorelectrodematerials |