Cargando…

Surface-Modified Carboxylated Cellulose Nanofiber Hydrogels for Prolonged Release of Polyhexamethylene Biguanide Hydrochloride (PHMB) for Antimicrobial Applications

The surface modification of cellulose nanofibers (CNFs) using a 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)/sodium bromide (NaBr)/sodium hypochlorite (NaClO) system was successful in improving their hydrophilicity. Following that, we fabricated hydrogels containing carboxylated cellulose nanofibers...

Descripción completa

Detalles Bibliográficos
Autores principales: O-chongpian, Pichapar, Chaiwarit, Tanpong, Jantanasakulwong, Kittisak, Rachtanapun, Pornchai, Worajittiphon, Patnarin, Kantrong, Nutthapong, Jantrawut, Pensak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490332/
https://www.ncbi.nlm.nih.gov/pubmed/37688198
http://dx.doi.org/10.3390/polym15173572
Descripción
Sumario:The surface modification of cellulose nanofibers (CNFs) using a 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)/sodium bromide (NaBr)/sodium hypochlorite (NaClO) system was successful in improving their hydrophilicity. Following that, we fabricated hydrogels containing carboxylated cellulose nanofibers (c-CNFs) and loaded them with polyhexamethylene biguanide (PHMB) using a physical crosslinking method, aiming for efficient antimicrobial uses. The morphological and physicochemical properties of all hydrogel formulations were characterized, and the results revealed that the 7% c-CNFs-2 h loaded with PHMB formulation exhibited desirable characteristics such as regular shape, high porosity, good mechanical properties, suitable gel content, and a good maximum swelling degree. The successful integration of PHMB into the c-CNF matrix was confirmed by FTIR analysis. Furthermore, the 7% c-CNFs-2 h loaded with the PHMB formulation demonstrated PHMB contents exceeding 80% and exhibited a prolonged drug release pattern for up to 3 days. Moreover, this formulation displayed antibacterial activity against S. aureus and P. aeruginosa. In conclusion, the novel approach of c-CNF hydrogels loaded with PHMB through physical crosslinking shows promise as a potential system for prolonged drug release in topical drug delivery while also exhibiting excellent antibacterial activity.