Cargando…

Design and Development of an Ultraviolet All-Sky Imaging System

All-sky cameras capture a panoramic view of the full sky from horizon to horizon to generate a wide-angle image of the observable sky. State-of-the-art all-sky imagers are limited to imaging in the visible and infrared spectrum and cannot image in the UV spectrum. This article describes the developm...

Descripción completa

Detalles Bibliográficos
Autores principales: Mathanlal, Thasshwin, Martin-Torres, Javier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490363/
https://www.ncbi.nlm.nih.gov/pubmed/37687799
http://dx.doi.org/10.3390/s23177343
Descripción
Sumario:All-sky cameras capture a panoramic view of the full sky from horizon to horizon to generate a wide-angle image of the observable sky. State-of-the-art all-sky imagers are limited to imaging in the visible and infrared spectrum and cannot image in the UV spectrum. This article describes the development of an all-sky imaging system capable of capturing 130° wide-angle sky images from horizon to horizon in the UV-AB spectrum. The design of the UV all-sky imaging system is based on low-cost, accessible, and scalable components to develop multiple images that can be deployed over a wider geographical area. The spectral response of the camera system has been validated in the UV spectrum (280–420 nm) using a monochromatic UV beam with an average power output of 22 nW. UV all-sky imaging systems complement existing infrared and visible all-sky cameras. They have wide applications in astronomy, meteorology, atmospheric science, vulcanology, meteors and auroral monitoring, and the defence sector.