Cargando…

Study on the Effect of PTFE/Cu Composite Material Preparation Process on Penetration Performance

The jet formed by the traditional metal liner has a slender shape. The diameter of the jet head is consistent with that of the tail, and the ductility is good. When it is used to penetrate the target, it has a good damage effect. The low-density jet formed by the PTFE/Cu liner, according to the diff...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Jianya, Hao, Ruijie, Tang, Xuezhi, Guan, Siman, Wang, Zhijun, Yin, Jianping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490509/
https://www.ncbi.nlm.nih.gov/pubmed/37688130
http://dx.doi.org/10.3390/polym15173504
Descripción
Sumario:The jet formed by the traditional metal liner has a slender shape. The diameter of the jet head is consistent with that of the tail, and the ductility is good. When it is used to penetrate the target, it has a good damage effect. The low-density jet formed by the PTFE/Cu liner, according to the different preparation processes and densities, has different degrees of radial expansion. This phenomenon may lead to the expansion of the jet head during the penetration process, resulting in a damage effect, which is different from the previous jet on the target. In this paper, the numerical simulation of PTFE/Cu liners with different preparation processes penetrating steel targets is carried out, and the effects of different preparation processes and liner density on the penetration characteristics of jets penetrating steel targets are compared and analyzed. The PTFE/Cu shaped charge liner was processed according to different preparation processes, and the jet penetration steel target experiment was carried out, so as to verify and analyze the numerical simulation results.