Cargando…
Drivers’ Mental Engagement Analysis Using Multi-Sensor Fusion Approaches Based on Deep Convolutional Neural Networks
In this paper, we present a comprehensive assessment of individuals’ mental engagement states during manual and autonomous driving scenarios using a driving simulator. Our study employed two sensor fusion approaches, combining the data and features of multimodal signals. Participants in our experime...
Autores principales: | Aminosharieh Najafi, Taraneh, Affanni, Antonio, Rinaldo, Roberto, Zontone, Pamela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490517/ https://www.ncbi.nlm.nih.gov/pubmed/37687801 http://dx.doi.org/10.3390/s23177346 |
Ejemplares similares
-
Driver Attention Assessment Using Physiological Measures from EEG, ECG, and EDA Signals †
por: Aminosharieh Najafi, Taraneh, et al.
Publicado: (2023) -
Development of a Smart Chair Sensors System and Classification of Sitting Postures with Deep Learning Algorithms
por: Aminosharieh Najafi, Taraneh, et al.
Publicado: (2022) -
Development of an EEG Headband for Stress Measurement on Driving Simulators †
por: Affanni, Antonio, et al.
Publicado: (2022) -
Exploring Physiological Signal Responses to Traffic-Related Stress in Simulated Driving †
por: Zontone, Pamela, et al.
Publicado: (2022) -
Stress Evaluation in Simulated Autonomous and Manual Driving through the Analysis of Skin Potential Response and Electrocardiogram Signals
por: Zontone, Pamela, et al.
Publicado: (2020)