Cargando…

Bioactive and Biodegradable Polycaprolactone-Based Nanocomposite for Bone Repair Applications

This study investigated the relationship between the structure and mechanical properties of polycaprolactone (PCL) nanocomposites reinforced with baghdadite, a newly introduced bioactive agent. The baghdadite nanoparticles were synthesised using the sol–gel method and incorporated into PCL films usi...

Descripción completa

Detalles Bibliográficos
Autores principales: Emadi, Hosein, Karevan, Mehdi, Masoudi Rad, Maryam, Sadeghzade, Sorour, Pahlevanzadeh, Farnoosh, Khodaei, Mohammad, Khayatzadeh, Saber, Lotfian, Saeid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490551/
https://www.ncbi.nlm.nih.gov/pubmed/37688243
http://dx.doi.org/10.3390/polym15173617
_version_ 1785103865792692224
author Emadi, Hosein
Karevan, Mehdi
Masoudi Rad, Maryam
Sadeghzade, Sorour
Pahlevanzadeh, Farnoosh
Khodaei, Mohammad
Khayatzadeh, Saber
Lotfian, Saeid
author_facet Emadi, Hosein
Karevan, Mehdi
Masoudi Rad, Maryam
Sadeghzade, Sorour
Pahlevanzadeh, Farnoosh
Khodaei, Mohammad
Khayatzadeh, Saber
Lotfian, Saeid
author_sort Emadi, Hosein
collection PubMed
description This study investigated the relationship between the structure and mechanical properties of polycaprolactone (PCL) nanocomposites reinforced with baghdadite, a newly introduced bioactive agent. The baghdadite nanoparticles were synthesised using the sol–gel method and incorporated into PCL films using the solvent casting technique. The results showed that adding baghdadite to PCL improved the nanocomposites’ tensile strength and elastic modulus, consistent with the results obtained from the prediction models of mechanical properties. The tensile strength increased from 16 to 21 MPa, and the elastic modulus enhanced from 149 to 194 MPa with fillers compared to test specimens without fillers. The thermal properties of the nanocomposites were also improved, with the degradation temperature increasing from 388 °C to 402 °C when 10% baghdadite was added to PCL. Furthermore, it was found that the nanocomposites containing baghdadite showed an apatite-like layer on their surfaces when exposed to simulated body solution (SBF) for 28 days, especially in the film containing 20% nanoparticles (PB20), which exhibited higher apatite density. The addition of baghdadite nanoparticles into pure PCL also improved the viability of MG63 cells, increasing the viability percentage on day five from 103 in PCL to 136 in PB20. Additionally, PB20 showed a favourable degradation rate in PBS solution, increasing mass loss from 2.63 to 4.08 per cent over four weeks. Overall, this study provides valuable insights into the structure–property relationships of biodegradable-bioactive nanocomposites, particularly those reinforced with new bioactive agents.
format Online
Article
Text
id pubmed-10490551
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104905512023-09-09 Bioactive and Biodegradable Polycaprolactone-Based Nanocomposite for Bone Repair Applications Emadi, Hosein Karevan, Mehdi Masoudi Rad, Maryam Sadeghzade, Sorour Pahlevanzadeh, Farnoosh Khodaei, Mohammad Khayatzadeh, Saber Lotfian, Saeid Polymers (Basel) Article This study investigated the relationship between the structure and mechanical properties of polycaprolactone (PCL) nanocomposites reinforced with baghdadite, a newly introduced bioactive agent. The baghdadite nanoparticles were synthesised using the sol–gel method and incorporated into PCL films using the solvent casting technique. The results showed that adding baghdadite to PCL improved the nanocomposites’ tensile strength and elastic modulus, consistent with the results obtained from the prediction models of mechanical properties. The tensile strength increased from 16 to 21 MPa, and the elastic modulus enhanced from 149 to 194 MPa with fillers compared to test specimens without fillers. The thermal properties of the nanocomposites were also improved, with the degradation temperature increasing from 388 °C to 402 °C when 10% baghdadite was added to PCL. Furthermore, it was found that the nanocomposites containing baghdadite showed an apatite-like layer on their surfaces when exposed to simulated body solution (SBF) for 28 days, especially in the film containing 20% nanoparticles (PB20), which exhibited higher apatite density. The addition of baghdadite nanoparticles into pure PCL also improved the viability of MG63 cells, increasing the viability percentage on day five from 103 in PCL to 136 in PB20. Additionally, PB20 showed a favourable degradation rate in PBS solution, increasing mass loss from 2.63 to 4.08 per cent over four weeks. Overall, this study provides valuable insights into the structure–property relationships of biodegradable-bioactive nanocomposites, particularly those reinforced with new bioactive agents. MDPI 2023-08-31 /pmc/articles/PMC10490551/ /pubmed/37688243 http://dx.doi.org/10.3390/polym15173617 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Emadi, Hosein
Karevan, Mehdi
Masoudi Rad, Maryam
Sadeghzade, Sorour
Pahlevanzadeh, Farnoosh
Khodaei, Mohammad
Khayatzadeh, Saber
Lotfian, Saeid
Bioactive and Biodegradable Polycaprolactone-Based Nanocomposite for Bone Repair Applications
title Bioactive and Biodegradable Polycaprolactone-Based Nanocomposite for Bone Repair Applications
title_full Bioactive and Biodegradable Polycaprolactone-Based Nanocomposite for Bone Repair Applications
title_fullStr Bioactive and Biodegradable Polycaprolactone-Based Nanocomposite for Bone Repair Applications
title_full_unstemmed Bioactive and Biodegradable Polycaprolactone-Based Nanocomposite for Bone Repair Applications
title_short Bioactive and Biodegradable Polycaprolactone-Based Nanocomposite for Bone Repair Applications
title_sort bioactive and biodegradable polycaprolactone-based nanocomposite for bone repair applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490551/
https://www.ncbi.nlm.nih.gov/pubmed/37688243
http://dx.doi.org/10.3390/polym15173617
work_keys_str_mv AT emadihosein bioactiveandbiodegradablepolycaprolactonebasednanocompositeforbonerepairapplications
AT karevanmehdi bioactiveandbiodegradablepolycaprolactonebasednanocompositeforbonerepairapplications
AT masoudiradmaryam bioactiveandbiodegradablepolycaprolactonebasednanocompositeforbonerepairapplications
AT sadeghzadesorour bioactiveandbiodegradablepolycaprolactonebasednanocompositeforbonerepairapplications
AT pahlevanzadehfarnoosh bioactiveandbiodegradablepolycaprolactonebasednanocompositeforbonerepairapplications
AT khodaeimohammad bioactiveandbiodegradablepolycaprolactonebasednanocompositeforbonerepairapplications
AT khayatzadehsaber bioactiveandbiodegradablepolycaprolactonebasednanocompositeforbonerepairapplications
AT lotfiansaeid bioactiveandbiodegradablepolycaprolactonebasednanocompositeforbonerepairapplications