Cargando…
Surface Defect Detection of Bearing Rings Based on an Improved YOLOv5 Network
Considering the characteristics of complex texture backgrounds, uneven brightness, varying defect sizes, and multiple defect types of the bearing surface images, a surface defect detection method for bearing rings is proposed based on improved YOLOv5. First, replacing the C3 module in the backbone n...
Autores principales: | Xu, Haitao, Pan, Haipeng, Li, Junfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490562/ https://www.ncbi.nlm.nih.gov/pubmed/37687898 http://dx.doi.org/10.3390/s23177443 |
Ejemplares similares
-
GRP-YOLOv5: An Improved Bearing Defect Detection Algorithm Based on YOLOv5
por: Zhao, Yue, et al.
Publicado: (2023) -
MR-YOLO: An Improved YOLOv5 Network for Detecting Magnetic Ring Surface Defects
por: Lang, Xianli, et al.
Publicado: (2022) -
Metal surface defect detection based on improved YOLOv5
por: Zhou, Chuande, et al.
Publicado: (2023) -
Strip Surface Defect Detection Algorithm Based on YOLOv5
por: Wang, Han, et al.
Publicado: (2023) -
Strip steel surface defect detection based on lightweight YOLOv5
por: Zhang, Yongping, et al.
Publicado: (2023)