Cargando…
Qualitative Classification of Proximal Femoral Bone Using Geometric Features and Texture Analysis in Collected MRI Images for Bone Density Evaluation
The aim of this study was to use geometric features and texture analysis to discriminate between healthy and unhealthy femurs and to identify the most influential features. We scanned proximal femoral bone (PFB) of 284 Iranian cases (21 to 83 years old) using different dual-energy X-ray absorptiomet...
Autores principales: | Najafi, Mojtaba, Yousefi Rezaii, Tohid, Danishvar, Sebelan, Razavi, Seyed Naser |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490574/ https://www.ncbi.nlm.nih.gov/pubmed/37688068 http://dx.doi.org/10.3390/s23177612 |
Ejemplares similares
-
Generative Adversarial Network Image Synthesis Method for Skin Lesion Generation and Classification
por: Mutepfe, Freedom, et al.
Publicado: (2021) -
Segmentation of Brain Tumor Using a 3D Generative Adversarial Network
por: Kalejahi, Behnam Kiani, et al.
Publicado: (2023) -
Automatic Liver Tumor Segmentation from CT Images Using Graph Convolutional Network
por: Khoshkhabar, Maryam, et al.
Publicado: (2023) -
Deep Learning for Detecting Multi-Level Driver Fatigue Using Physiological Signals: A Comprehensive Approach
por: Peivandi, Mohammad, et al.
Publicado: (2023) -
An Automatic Bone Disorder Classification Using Hybrid Texture Feature Extraction with Bone Mineral Density
por: S, Ramkumar, et al.
Publicado: (2018)