Cargando…

Smart Home Automation-Based Hand Gesture Recognition Using Feature Fusion and Recurrent Neural Network

Gestures have been used for nonverbal communication for a long time, but human–computer interaction (HCI) via gestures is becoming more common in the modern era. To obtain a greater recognition rate, the traditional interface comprises various devices, such as gloves, physical controllers, and marke...

Descripción completa

Detalles Bibliográficos
Autores principales: Alabdullah, Bayan Ibrahimm, Ansar, Hira, Mudawi, Naif Al, Alazeb, Abdulwahab, Alshahrani, Abdullah, Alotaibi, Saud S., Jalal, Ahmad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490576/
https://www.ncbi.nlm.nih.gov/pubmed/37687978
http://dx.doi.org/10.3390/s23177523
Descripción
Sumario:Gestures have been used for nonverbal communication for a long time, but human–computer interaction (HCI) via gestures is becoming more common in the modern era. To obtain a greater recognition rate, the traditional interface comprises various devices, such as gloves, physical controllers, and markers. This study provides a new markerless technique for obtaining gestures without the need for any barriers or pricey hardware. In this paper, dynamic gestures are first converted into frames. The noise is removed, and intensity is adjusted for feature extraction. The hand gesture is first detected through the images, and the skeleton is computed through mathematical computations. From the skeleton, the features are extracted; these features include joint color cloud, neural gas, and directional active model. After that, the features are optimized, and a selective feature set is passed through the classifier recurrent neural network (RNN) to obtain the classification results with higher accuracy. The proposed model is experimentally assessed and trained over three datasets: HaGRI, Egogesture, and Jester. The experimental results for the three datasets provided improved results based on classification, and the proposed system achieved an accuracy of 92.57% over HaGRI, 91.86% over Egogesture, and 91.57% over the Jester dataset, respectively. Also, to check the model liability, the proposed method was tested on the WLASL dataset, attaining 90.43% accuracy. This paper also includes a comparison with other-state-of-the art methods to compare our model with the standard methods of recognition. Our model presented a higher accuracy rate with a markerless approach to save money and time for classifying the gestures for better interaction.