Cargando…
Real-Time Detection of Strawberry Ripeness Using Augmented Reality and Deep Learning
Currently, strawberry harvesting relies heavily on human labour and subjective assessments of ripeness, resulting in inconsistent post-harvest quality. Therefore, the aim of this work is to automate this process and provide a more accurate and efficient way of assessing ripeness. We explored a uniqu...
Autores principales: | Chai, Jackey J. K., Xu, Jun-Li, O’Sullivan, Carol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490577/ https://www.ncbi.nlm.nih.gov/pubmed/37688097 http://dx.doi.org/10.3390/s23177639 |
Ejemplares similares
-
Trends of Augmented Reality for Agri-Food Applications
por: Xie, Junhao, et al.
Publicado: (2022) -
Strawberry Fungal Leaf Scorch Disease Identification in Real-Time Strawberry Field Using Deep Learning Architectures
por: Abbas, Irfan, et al.
Publicado: (2021) -
Application of Multispectral Imaging to Determine Quality Attributes and Ripeness Stage in Strawberry Fruit
por: Liu, Changhong, et al.
Publicado: (2014) -
Mass Spectrometry Imaging of Flavonols and Ellagic Acid Glycosides in Ripe Strawberry Fruit
por: Enomoto, Hirofumi
Publicado: (2020) -
Unique distribution of ellagitannins in ripe strawberry fruit revealed by mass spectrometry imaging
por: Enomoto, Hirofumi
Publicado: (2021)