Cargando…
Semantic Segmentation and Depth Estimation Based on Residual Attention Mechanism
Semantic segmentation and depth estimation are crucial components in the field of autonomous driving for scene understanding. Jointly learning these tasks can lead to a better understanding of scenarios. However, using task-specific networks to extract global features from task-shared networks can b...
Autores principales: | Ji, Naihua, Dong, Huiqian, Meng, Fanyun, Pang, Liping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490601/ https://www.ncbi.nlm.nih.gov/pubmed/37687922 http://dx.doi.org/10.3390/s23177466 |
Ejemplares similares
-
Semantic Segmentation Leveraging Simultaneous Depth Estimation
por: Sun, Wenbo, et al.
Publicado: (2021) -
SemanticDepth: Fusing Semantic Segmentation and Monocular Depth Estimation for Enabling Autonomous Driving in Roads without Lane Lines
por: Palafox, Pablo R., et al.
Publicado: (2019) -
Multiple-Attention Mechanism Network for Semantic Segmentation
por: Wang, Dongli, et al.
Publicado: (2022) -
Improving Depth Estimation by Embedding Semantic Segmentation: A Hybrid CNN Model
por: Valdez-Rodríguez, José E., et al.
Publicado: (2022) -
An ENet Semantic Segmentation Method Combined with Attention Mechanism
por: Bai, Wei
Publicado: (2023)