Cargando…

Transformer Decoder-Based Enhanced Exploration Method to Alleviate Initial Exploration Problems in Reinforcement Learning

In reinforcement learning, the epsilon (ε)-greedy strategy is commonly employed as an exploration technique This method, however, leads to extensive initial exploration and prolonged learning periods. Existing approaches to mitigate this issue involve constraining the exploration range using expert...

Descripción completa

Detalles Bibliográficos
Autores principales: Kyoung, Dohyun, Sung, Yunsick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490608/
https://www.ncbi.nlm.nih.gov/pubmed/37687867
http://dx.doi.org/10.3390/s23177411
_version_ 1785103879192444928
author Kyoung, Dohyun
Sung, Yunsick
author_facet Kyoung, Dohyun
Sung, Yunsick
author_sort Kyoung, Dohyun
collection PubMed
description In reinforcement learning, the epsilon (ε)-greedy strategy is commonly employed as an exploration technique This method, however, leads to extensive initial exploration and prolonged learning periods. Existing approaches to mitigate this issue involve constraining the exploration range using expert data or utilizing pretrained models. Nevertheless, these methods do not effectively reduce the initial exploration range, as the exploration by the agent is limited to states adjacent to those included in the expert data. This paper proposes a method to reduce the initial exploration range in reinforcement learning through a pretrained transformer decoder on expert data. The proposed method involves pretraining a transformer decoder with massive expert data to guide the agent’s actions during the early learning stages. After achieving a certain learning threshold, the actions are determined using the epsilon-greedy strategy. An experiment was conducted in the basketball game FreeStyle1 to compare the proposed method with the traditional Deep Q-Network (DQN) using the epsilon-greedy strategy. The results indicated that the proposed method yielded approximately 2.5 times the average reward and a 26% higher win rate, proving its enhanced performance in reducing exploration range and optimizing learning times. This innovative method presents a significant improvement over traditional exploration techniques in reinforcement learning.
format Online
Article
Text
id pubmed-10490608
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104906082023-09-09 Transformer Decoder-Based Enhanced Exploration Method to Alleviate Initial Exploration Problems in Reinforcement Learning Kyoung, Dohyun Sung, Yunsick Sensors (Basel) Article In reinforcement learning, the epsilon (ε)-greedy strategy is commonly employed as an exploration technique This method, however, leads to extensive initial exploration and prolonged learning periods. Existing approaches to mitigate this issue involve constraining the exploration range using expert data or utilizing pretrained models. Nevertheless, these methods do not effectively reduce the initial exploration range, as the exploration by the agent is limited to states adjacent to those included in the expert data. This paper proposes a method to reduce the initial exploration range in reinforcement learning through a pretrained transformer decoder on expert data. The proposed method involves pretraining a transformer decoder with massive expert data to guide the agent’s actions during the early learning stages. After achieving a certain learning threshold, the actions are determined using the epsilon-greedy strategy. An experiment was conducted in the basketball game FreeStyle1 to compare the proposed method with the traditional Deep Q-Network (DQN) using the epsilon-greedy strategy. The results indicated that the proposed method yielded approximately 2.5 times the average reward and a 26% higher win rate, proving its enhanced performance in reducing exploration range and optimizing learning times. This innovative method presents a significant improvement over traditional exploration techniques in reinforcement learning. MDPI 2023-08-25 /pmc/articles/PMC10490608/ /pubmed/37687867 http://dx.doi.org/10.3390/s23177411 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kyoung, Dohyun
Sung, Yunsick
Transformer Decoder-Based Enhanced Exploration Method to Alleviate Initial Exploration Problems in Reinforcement Learning
title Transformer Decoder-Based Enhanced Exploration Method to Alleviate Initial Exploration Problems in Reinforcement Learning
title_full Transformer Decoder-Based Enhanced Exploration Method to Alleviate Initial Exploration Problems in Reinforcement Learning
title_fullStr Transformer Decoder-Based Enhanced Exploration Method to Alleviate Initial Exploration Problems in Reinforcement Learning
title_full_unstemmed Transformer Decoder-Based Enhanced Exploration Method to Alleviate Initial Exploration Problems in Reinforcement Learning
title_short Transformer Decoder-Based Enhanced Exploration Method to Alleviate Initial Exploration Problems in Reinforcement Learning
title_sort transformer decoder-based enhanced exploration method to alleviate initial exploration problems in reinforcement learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490608/
https://www.ncbi.nlm.nih.gov/pubmed/37687867
http://dx.doi.org/10.3390/s23177411
work_keys_str_mv AT kyoungdohyun transformerdecoderbasedenhancedexplorationmethodtoalleviateinitialexplorationproblemsinreinforcementlearning
AT sungyunsick transformerdecoderbasedenhancedexplorationmethodtoalleviateinitialexplorationproblemsinreinforcementlearning