Cargando…
Ensemble Model Based on Hybrid Deep Learning for Intrusion Detection in Smart Grid Networks
The Smart Grid aims to enhance the electric grid’s reliability, safety, and efficiency by utilizing digital information and control technologies. Real-time analysis and state estimation methods are crucial for ensuring proper control implementation. However, the reliance of Smart Grid systems on com...
Autores principales: | AlHaddad, Ulaa, Basuhail, Abdullah, Khemakhem, Maher, Eassa, Fathy Elbouraey, Jambi, Kamal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490611/ https://www.ncbi.nlm.nih.gov/pubmed/37687919 http://dx.doi.org/10.3390/s23177464 |
Ejemplares similares
-
Deep Reinforcement Learning for Workload Prediction in Federated Cloud Environments
por: Ahamed, Zaakki, et al.
Publicado: (2023) -
A security testing mechanism for detecting attacks in distributed software applications using blockchain
por: Algarni, Abdullah, et al.
Publicado: (2023) -
One- and Two-Phase Software Requirement Classification Using Ensemble Deep Learning
por: Rahimi, Nouf, et al.
Publicado: (2021) -
ARIES: A Novel Multivariate Intrusion Detection System for Smart Grid
por: Radoglou Grammatikis, Panagiotis, et al.
Publicado: (2020) -
Power-Based Non-Intrusive Condition Monitoring for Terminal Device in Smart Grid †
por: Zhang, Guoming, et al.
Publicado: (2020)