Cargando…
A Transformer-Optimized Deep Learning Network for Road Damage Detection and Tracking
To solve the problems of low accuracy and false counts of existing models in road damage object detection and tracking, in this paper, we propose Road-TransTrack, a tracking model based on transformer optimization. First, using the classification network based on YOLOv5, the collected road damage im...
Autores principales: | Wang, Niannian, Shang, Lihang, Song, Xiaotian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490637/ https://www.ncbi.nlm.nih.gov/pubmed/37687850 http://dx.doi.org/10.3390/s23177395 |
Ejemplares similares
-
RDD2020: An annotated image dataset for automatic road damage detection using deep learning
por: Arya, Deeksha, et al.
Publicado: (2021) -
Deep Learning with Attention Mechanisms for Road Weather Detection
por: Samo, Madiha, et al.
Publicado: (2023) -
Road Surface Damage Detection Using Fully Convolutional Neural Networks and Semi-Supervised Learning
por: Chun, Chanjun, et al.
Publicado: (2019) -
Predictive Maintenance of Norwegian Road Network Using Deep Learning Models
por: Hassan, Muhammad Umair, et al.
Publicado: (2023) -
Real-Time Detection of Railway Track Component via One-Stage Deep Learning Networks
por: Wang, Tiange, et al.
Publicado: (2020)