Cargando…
Automatic Liver Tumor Segmentation from CT Images Using Graph Convolutional Network
Segmenting the liver and liver tumors in computed tomography (CT) images is an important step toward quantifiable biomarkers for a computer-aided decision-making system and precise medical diagnosis. Radiologists and specialized physicians use CT images to diagnose and classify liver organs and tumo...
Autores principales: | Khoshkhabar, Maryam, Meshgini, Saeed, Afrouzian, Reza, Danishvar, Sebelan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490641/ https://www.ncbi.nlm.nih.gov/pubmed/37688038 http://dx.doi.org/10.3390/s23177561 |
Ejemplares similares
-
Segmentation of Brain Tumor Using a 3D Generative Adversarial Network
por: Kalejahi, Behnam Kiani, et al.
Publicado: (2023) -
Generative Adversarial Network Image Synthesis Method for Skin Lesion Generation and Classification
por: Mutepfe, Freedom, et al.
Publicado: (2021) -
Accurate emotion recognition using Bayesian model based EEG sources as dynamic graph convolutional neural network nodes
por: Asadzadeh, Shiva, et al.
Publicado: (2022) -
Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing
por: Chlebus, Grzegorz, et al.
Publicado: (2018) -
Automatic Liver Segmentation on Volumetric CT Images Using Supervoxel-Based Graph Cuts
por: Wu, Weiwei, et al.
Publicado: (2016)