Cargando…
A Spatial-Temporal Graph Convolutional Recurrent Network for Transportation Flow Estimation
Accurate estimation of transportation flow is a challenging task in Intelligent Transportation Systems (ITS). Transporting data with dynamic spatial-temporal dependencies elevates transportation flow forecasting to a significant issue for operational planning, managing passenger flow, and arranging...
Autores principales: | Drosouli, Ifigenia, Voulodimos, Athanasios, Mastorocostas, Paris, Miaoulis, Georgios, Ghazanfarpour, Djamchid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490678/ https://www.ncbi.nlm.nih.gov/pubmed/37687992 http://dx.doi.org/10.3390/s23177534 |
Ejemplares similares
-
Transportation Mode Detection Using an Optimized Long Short-Term Memory Model on Multimodal Sensor Data
por: Drosouli, Ifigenia, et al.
Publicado: (2021) -
Using Random Forests on Real-World City Data for Urban Planning in a Visual Semantic Decision Support System
por: Sideris, Nikolaos, et al.
Publicado: (2019) -
Modelling and Predictive Monitoring of Business Processes under Uncertainty with Reinforcement Learning
por: Bousdekis, Alexandros, et al.
Publicado: (2023) -
STHSGCN: Spatial-temporal heterogeneous and synchronous graph convolution network for traffic flow prediction
por: Yu, Xian, et al.
Publicado: (2023) -
Highway traffic flow prediction model with multi-component spatial–temporal graph convolution networks
por: Ning, Tao, et al.
Publicado: (2022)