Cargando…
Radar-Camera Fusion Network for Depth Estimation in Structured Driving Scenes
Depth estimation is an important part of the perception system in autonomous driving. Current studies often reconstruct dense depth maps from RGB images and sparse depth maps obtained from other sensors. However, existing methods often pay insufficient attention to latent semantic information. Consi...
Autores principales: | Li, Shuguang, Yan, Jiafu, Chen, Haoran, Zheng, Ke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490688/ https://www.ncbi.nlm.nih.gov/pubmed/37688016 http://dx.doi.org/10.3390/s23177560 |
Ejemplares similares
-
A Real-Time Respiration Monitoring and Classification System Using a Depth Camera and Radars
por: He, Shan, et al.
Publicado: (2022) -
Heterogeneous Fusion of Camera and mmWave Radar Sensor of Optimizing Convolutional Neural Networks for Parking Meter System
por: Sun, Chi-Chia, et al.
Publicado: (2023) -
Selective Segmentation for Global Optimization of Depth Estimation in Complex Scenes
por: Liu, Sheng, et al.
Publicado: (2013) -
An Approach to the Use of Depth Cameras for Weed Volume Estimation
por: Andújar, Dionisio, et al.
Publicado: (2016) -
CuFusion: Accurate Real-Time Camera Tracking and Volumetric Scene Reconstruction with a Cuboid
por: Zhang, Chen, et al.
Publicado: (2017)