Cargando…
Sar Ship Detection Based on Convnext with Multi-Pooling Channel Attention and Feature Intensification Pyramid Network
The advancements in ship detection technology using convolutional neural networks (CNNs) regarding synthetic aperture radar (SAR) images have been significant. Yet, there are still some limitations in the existing detection algorithms. First, the backbones cannot generate high-quality multiscale fea...
Autores principales: | Wei, Fanming, Wang, Xiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490690/ https://www.ncbi.nlm.nih.gov/pubmed/37688096 http://dx.doi.org/10.3390/s23177641 |
Ejemplares similares
-
A Novel Decoupled Feature Pyramid Networks for Multi-Target Ship Detection
por: Xue, Wentao, et al.
Publicado: (2023) -
ConvNeXt steel slag sand substitution rate detection method incorporating attention mechanism
por: Teng, Shengjie, et al.
Publicado: (2023) -
HA-FPN: Hierarchical Attention Feature Pyramid Network for Object Detection
por: Dang, Jin, et al.
Publicado: (2023) -
Visual Parking Occupancy Detection Using Extended Contextual Image Information via a Multi-Branch Output ConvNeXt Network
por: Encío, Leyre, et al.
Publicado: (2023) -
Predicting Breast Tumor Malignancy Using Deep ConvNeXt Radiomics and Quality-Based Score Pooling in Ultrasound Sequences
por: Hassanien, Mohamed A., et al.
Publicado: (2022)