Cargando…
Limitations and Future Aspects of Communication Costs in Federated Learning: A Survey
This paper explores the potential for communication-efficient federated learning (FL) in modern distributed systems. FL is an emerging distributed machine learning technique that allows for the distributed training of a single machine learning model across multiple geographically distributed clients...
Autores principales: | Asad, Muhammad, Shaukat, Saima, Hu, Dou, Wang, Zekun, Javanmardi, Ehsan, Nakazato, Jin, Tsukada, Manabu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490700/ https://www.ncbi.nlm.nih.gov/pubmed/37687814 http://dx.doi.org/10.3390/s23177358 |
Ejemplares similares
-
Challenges and future directions of secure federated learning: a survey
por: Zhang, Kaiyue, et al.
Publicado: (2021) -
Practical aspects of federalizing disaster response
por: Clark, James L
Publicado: (2006) -
The Sanitary Aspect of the Recent Federal Campaign
Publicado: (1863) -
FedPSO: Federated Learning Using Particle Swarm Optimization to Reduce Communication Costs
por: Park, Sunghwan, et al.
Publicado: (2021) -
Federated Learning in Ocular Imaging: Current Progress and Future Direction
por: Nguyen, Truong X., et al.
Publicado: (2022)