Cargando…
A Low Complexity Rolling Bearing Diagnosis Technique Based on Machine Learning and Smart Preprocessing
In this work, we present a diagnosis system for rolling bearings that leverages simultaneous measurements of vibrations and machine rotation speed. Our approach combines the robustness of simple time domain methods for fault detection with the potential of machine learning techniques for fault locat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490720/ https://www.ncbi.nlm.nih.gov/pubmed/37688002 http://dx.doi.org/10.3390/s23177546 |
_version_ | 1785103905911209984 |
---|---|
author | Fort, Ada Landi, Elia Mugnaini, Marco Vignoli, Valerio |
author_facet | Fort, Ada Landi, Elia Mugnaini, Marco Vignoli, Valerio |
author_sort | Fort, Ada |
collection | PubMed |
description | In this work, we present a diagnosis system for rolling bearings that leverages simultaneous measurements of vibrations and machine rotation speed. Our approach combines the robustness of simple time domain methods for fault detection with the potential of machine learning techniques for fault location. This research is based on a neural network classifier, which exploits a simple and novel preprocessing algorithm specifically designed for minimizing the dependency of the classifier performance on the machine working conditions, on the bearing model and on the acquisition system set-up. The overall diagnosis system is based on light algorithms with reduced complexity and hardware resource demand and is designed to be deployed in embedded electronics. The fault diagnosis system was trained using emulated data, exploiting an ad-hoc test bench thus avoiding the problem of generating enough data, achieving an overall classifier accuracy larger than 98%. Its noteworthy ability to generalize was proven by using data emulating different working conditions and acquisition set-ups and noise levels, obtaining in all the cases accuracies greater than 97%, thereby proving in this way that the proposed system can be applied in a wide spectrum of different applications. Finally, real data from an on-line database containing vibration signals obtained in a completely different scenario are used to demonstrate the distinctive capability of the proposed system to generalize. |
format | Online Article Text |
id | pubmed-10490720 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104907202023-09-09 A Low Complexity Rolling Bearing Diagnosis Technique Based on Machine Learning and Smart Preprocessing Fort, Ada Landi, Elia Mugnaini, Marco Vignoli, Valerio Sensors (Basel) Article In this work, we present a diagnosis system for rolling bearings that leverages simultaneous measurements of vibrations and machine rotation speed. Our approach combines the robustness of simple time domain methods for fault detection with the potential of machine learning techniques for fault location. This research is based on a neural network classifier, which exploits a simple and novel preprocessing algorithm specifically designed for minimizing the dependency of the classifier performance on the machine working conditions, on the bearing model and on the acquisition system set-up. The overall diagnosis system is based on light algorithms with reduced complexity and hardware resource demand and is designed to be deployed in embedded electronics. The fault diagnosis system was trained using emulated data, exploiting an ad-hoc test bench thus avoiding the problem of generating enough data, achieving an overall classifier accuracy larger than 98%. Its noteworthy ability to generalize was proven by using data emulating different working conditions and acquisition set-ups and noise levels, obtaining in all the cases accuracies greater than 97%, thereby proving in this way that the proposed system can be applied in a wide spectrum of different applications. Finally, real data from an on-line database containing vibration signals obtained in a completely different scenario are used to demonstrate the distinctive capability of the proposed system to generalize. MDPI 2023-08-30 /pmc/articles/PMC10490720/ /pubmed/37688002 http://dx.doi.org/10.3390/s23177546 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fort, Ada Landi, Elia Mugnaini, Marco Vignoli, Valerio A Low Complexity Rolling Bearing Diagnosis Technique Based on Machine Learning and Smart Preprocessing |
title | A Low Complexity Rolling Bearing Diagnosis Technique Based on Machine Learning and Smart Preprocessing |
title_full | A Low Complexity Rolling Bearing Diagnosis Technique Based on Machine Learning and Smart Preprocessing |
title_fullStr | A Low Complexity Rolling Bearing Diagnosis Technique Based on Machine Learning and Smart Preprocessing |
title_full_unstemmed | A Low Complexity Rolling Bearing Diagnosis Technique Based on Machine Learning and Smart Preprocessing |
title_short | A Low Complexity Rolling Bearing Diagnosis Technique Based on Machine Learning and Smart Preprocessing |
title_sort | low complexity rolling bearing diagnosis technique based on machine learning and smart preprocessing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490720/ https://www.ncbi.nlm.nih.gov/pubmed/37688002 http://dx.doi.org/10.3390/s23177546 |
work_keys_str_mv | AT fortada alowcomplexityrollingbearingdiagnosistechniquebasedonmachinelearningandsmartpreprocessing AT landielia alowcomplexityrollingbearingdiagnosistechniquebasedonmachinelearningandsmartpreprocessing AT mugnainimarco alowcomplexityrollingbearingdiagnosistechniquebasedonmachinelearningandsmartpreprocessing AT vignolivalerio alowcomplexityrollingbearingdiagnosistechniquebasedonmachinelearningandsmartpreprocessing AT fortada lowcomplexityrollingbearingdiagnosistechniquebasedonmachinelearningandsmartpreprocessing AT landielia lowcomplexityrollingbearingdiagnosistechniquebasedonmachinelearningandsmartpreprocessing AT mugnainimarco lowcomplexityrollingbearingdiagnosistechniquebasedonmachinelearningandsmartpreprocessing AT vignolivalerio lowcomplexityrollingbearingdiagnosistechniquebasedonmachinelearningandsmartpreprocessing |