Cargando…
Automatic Detection of Dyspnea in Real Human–Robot Interaction Scenarios
A respiratory distress estimation technique for telephony previously proposed by the authors is adapted and evaluated in real static and dynamic HRI scenarios. The system is evaluated with a telephone dataset re-recorded using the robotic platform designed and implemented for this study. In addition...
Autores principales: | Alvarado, Eduardo, Grágeda, Nicolás, Luzanto, Alejandro, Mahu, Rodrigo, Wuth, Jorge, Mendoza, Laura, Stern, Richard M., Yoma, Néstor Becerra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490721/ https://www.ncbi.nlm.nih.gov/pubmed/37688044 http://dx.doi.org/10.3390/s23177590 |
Ejemplares similares
-
Dyspnea Severity Assessment Based on Vocalization Behavior with Deep Learning on the Telephone
por: Alvarado, Eduardo, et al.
Publicado: (2023) -
Research on Robot Grasping Based on Deep Learning for Real-Life Scenarios
por: Hu, Jie, et al.
Publicado: (2023) -
Towards the Automatic Scanning of Indoors with Robots
por: Adán, Antonio, et al.
Publicado: (2015) -
Pronto: A Multi-Sensor State Estimator for Legged Robots in Real-World Scenarios
por: Camurri, Marco, et al.
Publicado: (2020) -
Multi-Institutional Trends in Gynecological Robotic Surgery in India: A Real-World Scenario
por: Sinha, Rooma, et al.
Publicado: (2023)