Cargando…
Dual-Path Information Fusion and Twin Attention-Driven Global Modeling for Solar Irradiance Prediction
Accurate prediction of solar irradiance holds significant value for renewable energy usage and power grid management. However, traditional forecasting methods often overlook the time dependence of solar irradiance sequences and the varying importance of different influencing factors. To address this...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490736/ https://www.ncbi.nlm.nih.gov/pubmed/37687925 http://dx.doi.org/10.3390/s23177469 |
_version_ | 1785103909600100352 |
---|---|
author | Yang, Yushi Tang, Zhanjun Li, Zhiyuan He, Jianfeng Shi, Xiaobing Zhu, Yuting |
author_facet | Yang, Yushi Tang, Zhanjun Li, Zhiyuan He, Jianfeng Shi, Xiaobing Zhu, Yuting |
author_sort | Yang, Yushi |
collection | PubMed |
description | Accurate prediction of solar irradiance holds significant value for renewable energy usage and power grid management. However, traditional forecasting methods often overlook the time dependence of solar irradiance sequences and the varying importance of different influencing factors. To address this issue, this study proposes a dual-path information fusion and twin attention-driven solar irradiance forecasting model. The proposed framework comprises three components: a residual attention temporal convolution block (RACB), a dual-path information fusion module (DIFM), and a twin self-attention module (TSAM). These components collectively enhance the performance of multi-step solar irradiance forecasting. First, the RACB is designed to enable the network to adaptively learn important features while suppressing irrelevant ones. Second, the DIFM is implemented to reinforce the model’s robustness against input data variations and integrate multi-scale features. Lastly, the TSAM is introduced to extract long-term temporal dependencies from the sequence and facilitate multi-step prediction. In the solar irradiance forecasting experiments, the proposed model is compared with six benchmark models across four datasets. In the one-step predictions, the average performance metrics RMSE, MAE, and MAPE of the four datasets decreased within the ranges of 0.463–2.390 [Formula: see text] / [Formula: see text] , 0.439–2.005 [Formula: see text] / [Formula: see text] , and 1.3–9.2%, respectively. Additionally, the average [Formula: see text] value across the four datasets increased by 0.008 to 0.059. The experimental results indicate that the model proposed in this study exhibits enhanced accuracy and robustness in predictive performance, making it a reliable alternative for solar irradiance forecasting. |
format | Online Article Text |
id | pubmed-10490736 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104907362023-09-09 Dual-Path Information Fusion and Twin Attention-Driven Global Modeling for Solar Irradiance Prediction Yang, Yushi Tang, Zhanjun Li, Zhiyuan He, Jianfeng Shi, Xiaobing Zhu, Yuting Sensors (Basel) Article Accurate prediction of solar irradiance holds significant value for renewable energy usage and power grid management. However, traditional forecasting methods often overlook the time dependence of solar irradiance sequences and the varying importance of different influencing factors. To address this issue, this study proposes a dual-path information fusion and twin attention-driven solar irradiance forecasting model. The proposed framework comprises three components: a residual attention temporal convolution block (RACB), a dual-path information fusion module (DIFM), and a twin self-attention module (TSAM). These components collectively enhance the performance of multi-step solar irradiance forecasting. First, the RACB is designed to enable the network to adaptively learn important features while suppressing irrelevant ones. Second, the DIFM is implemented to reinforce the model’s robustness against input data variations and integrate multi-scale features. Lastly, the TSAM is introduced to extract long-term temporal dependencies from the sequence and facilitate multi-step prediction. In the solar irradiance forecasting experiments, the proposed model is compared with six benchmark models across four datasets. In the one-step predictions, the average performance metrics RMSE, MAE, and MAPE of the four datasets decreased within the ranges of 0.463–2.390 [Formula: see text] / [Formula: see text] , 0.439–2.005 [Formula: see text] / [Formula: see text] , and 1.3–9.2%, respectively. Additionally, the average [Formula: see text] value across the four datasets increased by 0.008 to 0.059. The experimental results indicate that the model proposed in this study exhibits enhanced accuracy and robustness in predictive performance, making it a reliable alternative for solar irradiance forecasting. MDPI 2023-08-28 /pmc/articles/PMC10490736/ /pubmed/37687925 http://dx.doi.org/10.3390/s23177469 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yang, Yushi Tang, Zhanjun Li, Zhiyuan He, Jianfeng Shi, Xiaobing Zhu, Yuting Dual-Path Information Fusion and Twin Attention-Driven Global Modeling for Solar Irradiance Prediction |
title | Dual-Path Information Fusion and Twin Attention-Driven Global Modeling for Solar Irradiance Prediction |
title_full | Dual-Path Information Fusion and Twin Attention-Driven Global Modeling for Solar Irradiance Prediction |
title_fullStr | Dual-Path Information Fusion and Twin Attention-Driven Global Modeling for Solar Irradiance Prediction |
title_full_unstemmed | Dual-Path Information Fusion and Twin Attention-Driven Global Modeling for Solar Irradiance Prediction |
title_short | Dual-Path Information Fusion and Twin Attention-Driven Global Modeling for Solar Irradiance Prediction |
title_sort | dual-path information fusion and twin attention-driven global modeling for solar irradiance prediction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490736/ https://www.ncbi.nlm.nih.gov/pubmed/37687925 http://dx.doi.org/10.3390/s23177469 |
work_keys_str_mv | AT yangyushi dualpathinformationfusionandtwinattentiondrivenglobalmodelingforsolarirradianceprediction AT tangzhanjun dualpathinformationfusionandtwinattentiondrivenglobalmodelingforsolarirradianceprediction AT lizhiyuan dualpathinformationfusionandtwinattentiondrivenglobalmodelingforsolarirradianceprediction AT hejianfeng dualpathinformationfusionandtwinattentiondrivenglobalmodelingforsolarirradianceprediction AT shixiaobing dualpathinformationfusionandtwinattentiondrivenglobalmodelingforsolarirradianceprediction AT zhuyuting dualpathinformationfusionandtwinattentiondrivenglobalmodelingforsolarirradianceprediction |