Cargando…
A Smart Home Digital Twin to Support the Recognition of Activities of Daily Living
One of the challenges in the field of human activity recognition in smart homes based on IoT sensors is the variability in the recorded data. This variability arises from differences in home configurations, sensor network setups, and the number and habits of inhabitants, resulting in a lack of data...
Autores principales: | Bouchabou, Damien, Grosset, Juliette, Nguyen, Sao Mai, Lohr, Christophe, Puig, Xavier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490763/ https://www.ncbi.nlm.nih.gov/pubmed/37688042 http://dx.doi.org/10.3390/s23177586 |
Ejemplares similares
-
A Survey of Human Activity Recognition in Smart Homes Based on IoT Sensors Algorithms: Taxonomies, Challenges, and Opportunities with Deep Learning
por: Bouchabou, Damien, et al.
Publicado: (2021) -
Dynamic Segmentation of Sensor Events for Real-Time Human Activity Recognition in a Smart Home Context
por: Najeh, Houda, et al.
Publicado: (2022) -
Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data
por: Nef, Tobias, et al.
Publicado: (2012) -
Convolutional Neural Network Bootstrapped by Dynamic Segmentation and Stigmergy-Based Encoding for Real-Time Human Activity Recognition in Smart Homes
por: Najeh, Houda, et al.
Publicado: (2023) -
Digital twin-driven smart supply chain
por: Wang, Lu, et al.
Publicado: (2022)