Cargando…
Remote Sensing Image Dehazing through an Unsupervised Generative Adversarial Network
The degradation of visual quality in remote sensing images caused by haze presents significant challenges in interpreting and extracting essential information. To effectively mitigate the impact of haze on image quality, we propose an unsupervised generative adversarial network specifically designed...
Autores principales: | Zhao, Liquan, Yin, Yanjiang, Zhong, Tie, Jia, Yanfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490768/ https://www.ncbi.nlm.nih.gov/pubmed/37687940 http://dx.doi.org/10.3390/s23177484 |
Ejemplares similares
-
Unsupervised Low-Light Image Enhancement Based on Generative Adversarial Network
por: Yu, Wenshuo, et al.
Publicado: (2023) -
A Review of Remote Sensing Image Dehazing
por: Liu, Juping, et al.
Publicado: (2021) -
Photo-Realistic Image Dehazing and Verifying Networks via Complementary Adversarial Learning
por: Shin, Joongchol, et al.
Publicado: (2021) -
Gated Dehazing Network via Least Square Adversarial Learning
por: Ha, Eunjae, et al.
Publicado: (2020) -
An Adversarial Dual-Branch Network for Nonhomogeneous Dehazing in Tunnel Construction
por: Shi, Zilu, et al.
Publicado: (2023)