Cargando…

Adaptive Neural Backstepping Terminal Sliding Mode Control of a DC-DC Buck Converter

In this paper, an adaptive backstepping terminal sliding mode control (ABTSMC) method based on a double hidden layer recurrent neural network (DHLRNN) is proposed for a DC-DC buck converter. The DHLRNN is utilized to approximate and compensate for the system uncertainty. On the basis of backstepping...

Descripción completa

Detalles Bibliográficos
Autores principales: Gong, Xiaoyu, Fei, Juntao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490785/
https://www.ncbi.nlm.nih.gov/pubmed/37687906
http://dx.doi.org/10.3390/s23177450
Descripción
Sumario:In this paper, an adaptive backstepping terminal sliding mode control (ABTSMC) method based on a double hidden layer recurrent neural network (DHLRNN) is proposed for a DC-DC buck converter. The DHLRNN is utilized to approximate and compensate for the system uncertainty. On the basis of backstepping control, a terminal sliding mode control (TSMC) is introduced to ensure the finite-time convergence of the tracking error. The effectiveness of the composite control method is verified on a converter prototype in different test conditions. The experimental comparison results demonstrate the proposed control method has better steady-state performance and faster transient response.