Cargando…
An Intelligent Multi-Local Model Bearing Fault Diagnosis Method Using Small Sample Fusion
It is essential to accurately diagnose bearing faults to avoid property losses or casualties in the industry caused by motor failures. Recently, the methods of fault diagnosis for bearings using deep learning methods have improved the safety of motor operations in a reliable and intelligent way. How...
Autores principales: | Zhou, Xianzhang, Li, Aohan, Han, Guangjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490808/ https://www.ncbi.nlm.nih.gov/pubmed/37688019 http://dx.doi.org/10.3390/s23177567 |
Ejemplares similares
-
Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion
por: Zhu, Huibin, et al.
Publicado: (2021) -
Intelligent Diagnosis of Rolling Bearings Fault Based on Multisignal Fusion and MTF-ResNet
por: He, Kecheng, et al.
Publicado: (2023) -
Intelligent Bearing Fault Diagnosis Based on Feature Fusion of One-Dimensional Dilated CNN and Multi-Domain Signal Processing
por: Dong, Kaitai, et al.
Publicado: (2023) -
Research on an intelligent diagnosis method of mechanical faults for small sample data sets
por: Zhao, Jun, et al.
Publicado: (2022) -
On the Accuracy of Fault Diagnosis for Rolling Element Bearings Using Improved DFA and Multi-Sensor Data Fusion Method
por: Song, Qiang, et al.
Publicado: (2020)