Cargando…

Machine Learning as a Strategic Tool for Helping Cocoa Farmers in Côte D’Ivoire

Machine learning can be used for social good. The employment of artificial intelligence in smart agriculture has many benefits for the environment: it helps small farmers (at a local scale) and policymakers and cooperatives (at regional scale) to take valid and coordinated countermeasures to combat...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferraris, Stefano, Meo, Rosa, Pinardi, Stefano, Salis, Matteo, Sartor, Gabriele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490821/
https://www.ncbi.nlm.nih.gov/pubmed/37688090
http://dx.doi.org/10.3390/s23177632
Descripción
Sumario:Machine learning can be used for social good. The employment of artificial intelligence in smart agriculture has many benefits for the environment: it helps small farmers (at a local scale) and policymakers and cooperatives (at regional scale) to take valid and coordinated countermeasures to combat climate change. This article discusses how artificial intelligence in agriculture can help to reduce costs, especially in developing countries such as Côte d’Ivoire, employing only low-cost or open-source tools, from hardware to software and open data. We developed machine learning models for two tasks: the first is improving agricultural farming cultivation, and the second is water management. For the first task, we used deep neural networks (YOLOv5m) to detect healthy plants and pods of cocoa and damaged ones only using mobile phone images. The results confirm it is possible to distinguish well the healthy from damaged ones. For actions at a larger scale, the second task proposes the analysis of remote sensors, coming from the GRACE NASA Mission and ERA5, produced by the Copernicus climate change service. A new deep neural network architecture (CIWA-net) is proposed with a U-Net-like architecture, aiming to forecast the total water storage anomalies. The model quality is compared to a vanilla convolutional neural network.