Cargando…
A novel hybrid framework based on temporal convolution network and transformer for network traffic prediction
BACKGROUND: Accurately predicting mobile network traffic can help mobile network operators allocate resources more rationally and can facilitate stable and fast network services to users. However, due to burstiness and uncertainty, it is difficult to accurately predict network traffic. METHODOLOGY:...
Autores principales: | Zhang, Zhiwei, Gong, Shuhui, Liu, Zhaoyu, Chen, Da |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490908/ https://www.ncbi.nlm.nih.gov/pubmed/37682829 http://dx.doi.org/10.1371/journal.pone.0288935 |
Ejemplares similares
-
Spatial-temporal hypergraph convolutional network for traffic forecasting
por: Zhao, Zhenzhen, et al.
Publicado: (2023) -
STHSGCN: Spatial-temporal heterogeneous and synchronous graph convolution network for traffic flow prediction
por: Yu, Xian, et al.
Publicado: (2023) -
Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks
por: Yu, Haiyang, et al.
Publicado: (2017) -
Cross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
por: Yu, Kun, et al.
Publicado: (2021) -
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
por: Liu, Shaohua, et al.
Publicado: (2021)