Cargando…
Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping
High temperatures present a formidable challenge to the cultivation of hot pepper, profoundly impacting not only vegetative growth but also leading to flower and fruit abscission, thereby causing a significant reduction in yield. To unravel the intricate genetic mechanisms governing heat tolerance i...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491018/ https://www.ncbi.nlm.nih.gov/pubmed/37692444 http://dx.doi.org/10.3389/fpls.2023.1232800 |
_version_ | 1785103977543630848 |
---|---|
author | TS, Aruna Srivastava, Arpita Tomar, Bhoopal Singh Behera, Tusar Kanti Krishna, Hari Jain, Pradeep Kumar Pandey, Renu Singh, Bhupinder Gupta, Ruchi Mangal, Manisha |
author_facet | TS, Aruna Srivastava, Arpita Tomar, Bhoopal Singh Behera, Tusar Kanti Krishna, Hari Jain, Pradeep Kumar Pandey, Renu Singh, Bhupinder Gupta, Ruchi Mangal, Manisha |
author_sort | TS, Aruna |
collection | PubMed |
description | High temperatures present a formidable challenge to the cultivation of hot pepper, profoundly impacting not only vegetative growth but also leading to flower and fruit abscission, thereby causing a significant reduction in yield. To unravel the intricate genetic mechanisms governing heat tolerance in hot pepper, an F(2) population was developed through the crossing of two distinct genotypes exhibiting contrasting heat tolerance characteristics: DLS-161-1 (heat tolerant) and DChBL-240 (heat susceptible). The F(2) population, along with the parental lines, was subjected to comprehensive phenotyping encompassing diverse morphological, physiological, and biochemical heat-related traits under high temperature conditions (with maximum temperature ranging from 31 to 46.5°C and minimum temperature from 15.4 to 30.5°C). Leveraging the Illumina Nova Seq-6000 platform, Double digest restriction-site associated DNA sequencing (ddRAD-seq) was employed to generate 67.215 Gb data, with subsequent alignment of 218.93 million processed reads against the reference genome of Capsicum annuum. Subsequent variant calling and ordering resulted in 5806 polymorphic SNP markers grouped into 12 LGs. Further QTL analysis identified 64 QTLs with LOD values ranging from 2.517 to 11.170 and explained phenotypic variance ranging from 4.05 to 19.39%. Among them, 21 QTLs, explaining more than 10% phenotypic variance, were identified as major QTLs controlling 9 morphological, 3 physiological, and 2 biochemical traits. Interestingly, several QTLs governing distinct parameters were found to be colocalized, suggesting either a profound correlation between the QTLs regulating these traits or their significant genomic proximity. In addition to the QTLs, we also identified 368380 SSR loci within the identified QTL regions, dinucleotides being the most abundant type (211,381). These findings provide valuable insights into the genetics of heat tolerance in hot peppers. The identified QTLs and SSR markers offer opportunities to develop heat-tolerant varieties, ensuring better crop performance under high-temperature conditions. |
format | Online Article Text |
id | pubmed-10491018 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-104910182023-09-09 Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping TS, Aruna Srivastava, Arpita Tomar, Bhoopal Singh Behera, Tusar Kanti Krishna, Hari Jain, Pradeep Kumar Pandey, Renu Singh, Bhupinder Gupta, Ruchi Mangal, Manisha Front Plant Sci Plant Science High temperatures present a formidable challenge to the cultivation of hot pepper, profoundly impacting not only vegetative growth but also leading to flower and fruit abscission, thereby causing a significant reduction in yield. To unravel the intricate genetic mechanisms governing heat tolerance in hot pepper, an F(2) population was developed through the crossing of two distinct genotypes exhibiting contrasting heat tolerance characteristics: DLS-161-1 (heat tolerant) and DChBL-240 (heat susceptible). The F(2) population, along with the parental lines, was subjected to comprehensive phenotyping encompassing diverse morphological, physiological, and biochemical heat-related traits under high temperature conditions (with maximum temperature ranging from 31 to 46.5°C and minimum temperature from 15.4 to 30.5°C). Leveraging the Illumina Nova Seq-6000 platform, Double digest restriction-site associated DNA sequencing (ddRAD-seq) was employed to generate 67.215 Gb data, with subsequent alignment of 218.93 million processed reads against the reference genome of Capsicum annuum. Subsequent variant calling and ordering resulted in 5806 polymorphic SNP markers grouped into 12 LGs. Further QTL analysis identified 64 QTLs with LOD values ranging from 2.517 to 11.170 and explained phenotypic variance ranging from 4.05 to 19.39%. Among them, 21 QTLs, explaining more than 10% phenotypic variance, were identified as major QTLs controlling 9 morphological, 3 physiological, and 2 biochemical traits. Interestingly, several QTLs governing distinct parameters were found to be colocalized, suggesting either a profound correlation between the QTLs regulating these traits or their significant genomic proximity. In addition to the QTLs, we also identified 368380 SSR loci within the identified QTL regions, dinucleotides being the most abundant type (211,381). These findings provide valuable insights into the genetics of heat tolerance in hot peppers. The identified QTLs and SSR markers offer opportunities to develop heat-tolerant varieties, ensuring better crop performance under high-temperature conditions. Frontiers Media S.A. 2023-08-25 /pmc/articles/PMC10491018/ /pubmed/37692444 http://dx.doi.org/10.3389/fpls.2023.1232800 Text en Copyright © 2023 TS, Srivastava, Tomar, Behera, Krishna, Jain, Pandey, Singh, Gupta and Mangal https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science TS, Aruna Srivastava, Arpita Tomar, Bhoopal Singh Behera, Tusar Kanti Krishna, Hari Jain, Pradeep Kumar Pandey, Renu Singh, Bhupinder Gupta, Ruchi Mangal, Manisha Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping |
title | Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping |
title_full | Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping |
title_fullStr | Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping |
title_full_unstemmed | Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping |
title_short | Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping |
title_sort | genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and qtl mapping |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491018/ https://www.ncbi.nlm.nih.gov/pubmed/37692444 http://dx.doi.org/10.3389/fpls.2023.1232800 |
work_keys_str_mv | AT tsaruna geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping AT srivastavaarpita geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping AT tomarbhoopalsingh geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping AT beheratusarkanti geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping AT krishnahari geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping AT jainpradeepkumar geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping AT pandeyrenu geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping AT singhbhupinder geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping AT guptaruchi geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping AT mangalmanisha geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping |