Cargando…

Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping

High temperatures present a formidable challenge to the cultivation of hot pepper, profoundly impacting not only vegetative growth but also leading to flower and fruit abscission, thereby causing a significant reduction in yield. To unravel the intricate genetic mechanisms governing heat tolerance i...

Descripción completa

Detalles Bibliográficos
Autores principales: TS, Aruna, Srivastava, Arpita, Tomar, Bhoopal Singh, Behera, Tusar Kanti, Krishna, Hari, Jain, Pradeep Kumar, Pandey, Renu, Singh, Bhupinder, Gupta, Ruchi, Mangal, Manisha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491018/
https://www.ncbi.nlm.nih.gov/pubmed/37692444
http://dx.doi.org/10.3389/fpls.2023.1232800
_version_ 1785103977543630848
author TS, Aruna
Srivastava, Arpita
Tomar, Bhoopal Singh
Behera, Tusar Kanti
Krishna, Hari
Jain, Pradeep Kumar
Pandey, Renu
Singh, Bhupinder
Gupta, Ruchi
Mangal, Manisha
author_facet TS, Aruna
Srivastava, Arpita
Tomar, Bhoopal Singh
Behera, Tusar Kanti
Krishna, Hari
Jain, Pradeep Kumar
Pandey, Renu
Singh, Bhupinder
Gupta, Ruchi
Mangal, Manisha
author_sort TS, Aruna
collection PubMed
description High temperatures present a formidable challenge to the cultivation of hot pepper, profoundly impacting not only vegetative growth but also leading to flower and fruit abscission, thereby causing a significant reduction in yield. To unravel the intricate genetic mechanisms governing heat tolerance in hot pepper, an F(2) population was developed through the crossing of two distinct genotypes exhibiting contrasting heat tolerance characteristics: DLS-161-1 (heat tolerant) and DChBL-240 (heat susceptible). The F(2) population, along with the parental lines, was subjected to comprehensive phenotyping encompassing diverse morphological, physiological, and biochemical heat-related traits under high temperature conditions (with maximum temperature ranging from 31 to 46.5°C and minimum temperature from 15.4 to 30.5°C). Leveraging the Illumina Nova Seq-6000 platform, Double digest restriction-site associated DNA sequencing (ddRAD-seq) was employed to generate 67.215 Gb data, with subsequent alignment of 218.93 million processed reads against the reference genome of Capsicum annuum. Subsequent variant calling and ordering resulted in 5806 polymorphic SNP markers grouped into 12 LGs. Further QTL analysis identified 64 QTLs with LOD values ranging from 2.517 to 11.170 and explained phenotypic variance ranging from 4.05 to 19.39%. Among them, 21 QTLs, explaining more than 10% phenotypic variance, were identified as major QTLs controlling 9 morphological, 3 physiological, and 2 biochemical traits. Interestingly, several QTLs governing distinct parameters were found to be colocalized, suggesting either a profound correlation between the QTLs regulating these traits or their significant genomic proximity. In addition to the QTLs, we also identified 368380 SSR loci within the identified QTL regions, dinucleotides being the most abundant type (211,381). These findings provide valuable insights into the genetics of heat tolerance in hot peppers. The identified QTLs and SSR markers offer opportunities to develop heat-tolerant varieties, ensuring better crop performance under high-temperature conditions.
format Online
Article
Text
id pubmed-10491018
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-104910182023-09-09 Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping TS, Aruna Srivastava, Arpita Tomar, Bhoopal Singh Behera, Tusar Kanti Krishna, Hari Jain, Pradeep Kumar Pandey, Renu Singh, Bhupinder Gupta, Ruchi Mangal, Manisha Front Plant Sci Plant Science High temperatures present a formidable challenge to the cultivation of hot pepper, profoundly impacting not only vegetative growth but also leading to flower and fruit abscission, thereby causing a significant reduction in yield. To unravel the intricate genetic mechanisms governing heat tolerance in hot pepper, an F(2) population was developed through the crossing of two distinct genotypes exhibiting contrasting heat tolerance characteristics: DLS-161-1 (heat tolerant) and DChBL-240 (heat susceptible). The F(2) population, along with the parental lines, was subjected to comprehensive phenotyping encompassing diverse morphological, physiological, and biochemical heat-related traits under high temperature conditions (with maximum temperature ranging from 31 to 46.5°C and minimum temperature from 15.4 to 30.5°C). Leveraging the Illumina Nova Seq-6000 platform, Double digest restriction-site associated DNA sequencing (ddRAD-seq) was employed to generate 67.215 Gb data, with subsequent alignment of 218.93 million processed reads against the reference genome of Capsicum annuum. Subsequent variant calling and ordering resulted in 5806 polymorphic SNP markers grouped into 12 LGs. Further QTL analysis identified 64 QTLs with LOD values ranging from 2.517 to 11.170 and explained phenotypic variance ranging from 4.05 to 19.39%. Among them, 21 QTLs, explaining more than 10% phenotypic variance, were identified as major QTLs controlling 9 morphological, 3 physiological, and 2 biochemical traits. Interestingly, several QTLs governing distinct parameters were found to be colocalized, suggesting either a profound correlation between the QTLs regulating these traits or their significant genomic proximity. In addition to the QTLs, we also identified 368380 SSR loci within the identified QTL regions, dinucleotides being the most abundant type (211,381). These findings provide valuable insights into the genetics of heat tolerance in hot peppers. The identified QTLs and SSR markers offer opportunities to develop heat-tolerant varieties, ensuring better crop performance under high-temperature conditions. Frontiers Media S.A. 2023-08-25 /pmc/articles/PMC10491018/ /pubmed/37692444 http://dx.doi.org/10.3389/fpls.2023.1232800 Text en Copyright © 2023 TS, Srivastava, Tomar, Behera, Krishna, Jain, Pandey, Singh, Gupta and Mangal https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
TS, Aruna
Srivastava, Arpita
Tomar, Bhoopal Singh
Behera, Tusar Kanti
Krishna, Hari
Jain, Pradeep Kumar
Pandey, Renu
Singh, Bhupinder
Gupta, Ruchi
Mangal, Manisha
Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping
title Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping
title_full Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping
title_fullStr Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping
title_full_unstemmed Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping
title_short Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping
title_sort genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and qtl mapping
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491018/
https://www.ncbi.nlm.nih.gov/pubmed/37692444
http://dx.doi.org/10.3389/fpls.2023.1232800
work_keys_str_mv AT tsaruna geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping
AT srivastavaarpita geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping
AT tomarbhoopalsingh geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping
AT beheratusarkanti geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping
AT krishnahari geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping
AT jainpradeepkumar geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping
AT pandeyrenu geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping
AT singhbhupinder geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping
AT guptaruchi geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping
AT mangalmanisha geneticanalysisofheattoleranceinhotpepperinsightsfromcomprehensivephenotypingandqtlmapping