Cargando…
Deep multiple-instance learning accurately predicts gene haploinsufficiency and deletion pathogenicity
Copy number losses (deletions) are a major contributor to the etiology of severe genetic disorders. Although haploinsufficient genes play a critical role in deletion pathogenicity, current methods for deletion pathogenicity prediction fail to integrate multiple lines of evidence for haploinsufficien...
Autores principales: | Liu, Zhihan, Huang, Yi-Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491176/ https://www.ncbi.nlm.nih.gov/pubmed/37693607 http://dx.doi.org/10.1101/2023.08.29.555384 |
Ejemplares similares
-
DeepLION: Deep Multi-Instance Learning Improves the Prediction of Cancer-Associated T Cell Receptors for Accurate Cancer Detection
por: Xu, Ying, et al.
Publicado: (2022) -
Drug activity prediction using multiple-instance learning via joint instance and feature selection
por: Zhao, Zhendong, et al.
Publicado: (2013) -
Classifying and segmenting microscopy images with deep multiple instance learning
por: Kraus, Oren Z., et al.
Publicado: (2016) -
Implementation of multiple-instance learning in drug activity prediction
por: Fu, Gang, et al.
Publicado: (2012) -
Colorectal Cancer Survival Prediction Using Deep Distribution Based Multiple-Instance Learning
por: Li, Xingyu, et al.
Publicado: (2022)