Cargando…

Computational exploration of the global microbiome for antibiotic discovery

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere,...

Descripción completa

Detalles Bibliográficos
Autores principales: Santos-Júnior, Célio Dias, Der Torossian Torres, Marcelo, Duan, Yiqian, del Río, Álvaro Rodríguez, Schmidt, Thomas S.B., Chong, Hui, Fullam, Anthony, Kuhn, Michael, Zhu, Chengkai, Houseman, Amy, Somborski, Jelena, Vines, Anna, Zhao, Xing-Ming, Bork, Peer, Huerta-Cepas, Jaime, de la Fuente-Nunez, Cesar, Coelho, Luis Pedro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491242/
https://www.ncbi.nlm.nih.gov/pubmed/37693522
http://dx.doi.org/10.1101/2023.08.31.555663
_version_ 1785104019861012480
author Santos-Júnior, Célio Dias
Der Torossian Torres, Marcelo
Duan, Yiqian
del Río, Álvaro Rodríguez
Schmidt, Thomas S.B.
Chong, Hui
Fullam, Anthony
Kuhn, Michael
Zhu, Chengkai
Houseman, Amy
Somborski, Jelena
Vines, Anna
Zhao, Xing-Ming
Bork, Peer
Huerta-Cepas, Jaime
de la Fuente-Nunez, Cesar
Coelho, Luis Pedro
author_facet Santos-Júnior, Célio Dias
Der Torossian Torres, Marcelo
Duan, Yiqian
del Río, Álvaro Rodríguez
Schmidt, Thomas S.B.
Chong, Hui
Fullam, Anthony
Kuhn, Michael
Zhu, Chengkai
Houseman, Amy
Somborski, Jelena
Vines, Anna
Zhao, Xing-Ming
Bork, Peer
Huerta-Cepas, Jaime
de la Fuente-Nunez, Cesar
Coelho, Luis Pedro
author_sort Santos-Júnior, Célio Dias
collection PubMed
description Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, the majority of which were previously unknown. We observed that AMP production varies by habitat, with animal-associated samples displaying the highest proportion of AMPs compared to other habitats. Furthermore, within different human-associated microbiota, strain-level differences were evident. To validate our predictions, we synthesized and experimentally tested 50 AMPs, demonstrating their efficacy against clinically relevant drug-resistant pathogens both in vitro and in vivo. These AMPs exhibited antibacterial activity by targeting the bacterial membrane. Additionally, AMPSphere provides valuable insights into the evolutionary origins of peptides. In conclusion, our approach identified AMP sequences within prokaryotic microbiomes, opening up new avenues for the discovery of antibiotics.
format Online
Article
Text
id pubmed-10491242
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-104912422023-09-09 Computational exploration of the global microbiome for antibiotic discovery Santos-Júnior, Célio Dias Der Torossian Torres, Marcelo Duan, Yiqian del Río, Álvaro Rodríguez Schmidt, Thomas S.B. Chong, Hui Fullam, Anthony Kuhn, Michael Zhu, Chengkai Houseman, Amy Somborski, Jelena Vines, Anna Zhao, Xing-Ming Bork, Peer Huerta-Cepas, Jaime de la Fuente-Nunez, Cesar Coelho, Luis Pedro bioRxiv Article Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, the majority of which were previously unknown. We observed that AMP production varies by habitat, with animal-associated samples displaying the highest proportion of AMPs compared to other habitats. Furthermore, within different human-associated microbiota, strain-level differences were evident. To validate our predictions, we synthesized and experimentally tested 50 AMPs, demonstrating their efficacy against clinically relevant drug-resistant pathogens both in vitro and in vivo. These AMPs exhibited antibacterial activity by targeting the bacterial membrane. Additionally, AMPSphere provides valuable insights into the evolutionary origins of peptides. In conclusion, our approach identified AMP sequences within prokaryotic microbiomes, opening up new avenues for the discovery of antibiotics. Cold Spring Harbor Laboratory 2023-09-11 /pmc/articles/PMC10491242/ /pubmed/37693522 http://dx.doi.org/10.1101/2023.08.31.555663 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Santos-Júnior, Célio Dias
Der Torossian Torres, Marcelo
Duan, Yiqian
del Río, Álvaro Rodríguez
Schmidt, Thomas S.B.
Chong, Hui
Fullam, Anthony
Kuhn, Michael
Zhu, Chengkai
Houseman, Amy
Somborski, Jelena
Vines, Anna
Zhao, Xing-Ming
Bork, Peer
Huerta-Cepas, Jaime
de la Fuente-Nunez, Cesar
Coelho, Luis Pedro
Computational exploration of the global microbiome for antibiotic discovery
title Computational exploration of the global microbiome for antibiotic discovery
title_full Computational exploration of the global microbiome for antibiotic discovery
title_fullStr Computational exploration of the global microbiome for antibiotic discovery
title_full_unstemmed Computational exploration of the global microbiome for antibiotic discovery
title_short Computational exploration of the global microbiome for antibiotic discovery
title_sort computational exploration of the global microbiome for antibiotic discovery
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491242/
https://www.ncbi.nlm.nih.gov/pubmed/37693522
http://dx.doi.org/10.1101/2023.08.31.555663
work_keys_str_mv AT santosjuniorceliodias computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery
AT dertorossiantorresmarcelo computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery
AT duanyiqian computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery
AT delrioalvarorodriguez computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery
AT schmidtthomassb computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery
AT chonghui computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery
AT fullamanthony computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery
AT kuhnmichael computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery
AT zhuchengkai computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery
AT housemanamy computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery
AT somborskijelena computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery
AT vinesanna computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery
AT zhaoxingming computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery
AT borkpeer computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery
AT huertacepasjaime computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery
AT delafuentenunezcesar computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery
AT coelholuispedro computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery