Cargando…
Computational exploration of the global microbiome for antibiotic discovery
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere,...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491242/ https://www.ncbi.nlm.nih.gov/pubmed/37693522 http://dx.doi.org/10.1101/2023.08.31.555663 |
_version_ | 1785104019861012480 |
---|---|
author | Santos-Júnior, Célio Dias Der Torossian Torres, Marcelo Duan, Yiqian del Río, Álvaro Rodríguez Schmidt, Thomas S.B. Chong, Hui Fullam, Anthony Kuhn, Michael Zhu, Chengkai Houseman, Amy Somborski, Jelena Vines, Anna Zhao, Xing-Ming Bork, Peer Huerta-Cepas, Jaime de la Fuente-Nunez, Cesar Coelho, Luis Pedro |
author_facet | Santos-Júnior, Célio Dias Der Torossian Torres, Marcelo Duan, Yiqian del Río, Álvaro Rodríguez Schmidt, Thomas S.B. Chong, Hui Fullam, Anthony Kuhn, Michael Zhu, Chengkai Houseman, Amy Somborski, Jelena Vines, Anna Zhao, Xing-Ming Bork, Peer Huerta-Cepas, Jaime de la Fuente-Nunez, Cesar Coelho, Luis Pedro |
author_sort | Santos-Júnior, Célio Dias |
collection | PubMed |
description | Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, the majority of which were previously unknown. We observed that AMP production varies by habitat, with animal-associated samples displaying the highest proportion of AMPs compared to other habitats. Furthermore, within different human-associated microbiota, strain-level differences were evident. To validate our predictions, we synthesized and experimentally tested 50 AMPs, demonstrating their efficacy against clinically relevant drug-resistant pathogens both in vitro and in vivo. These AMPs exhibited antibacterial activity by targeting the bacterial membrane. Additionally, AMPSphere provides valuable insights into the evolutionary origins of peptides. In conclusion, our approach identified AMP sequences within prokaryotic microbiomes, opening up new avenues for the discovery of antibiotics. |
format | Online Article Text |
id | pubmed-10491242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-104912422023-09-09 Computational exploration of the global microbiome for antibiotic discovery Santos-Júnior, Célio Dias Der Torossian Torres, Marcelo Duan, Yiqian del Río, Álvaro Rodríguez Schmidt, Thomas S.B. Chong, Hui Fullam, Anthony Kuhn, Michael Zhu, Chengkai Houseman, Amy Somborski, Jelena Vines, Anna Zhao, Xing-Ming Bork, Peer Huerta-Cepas, Jaime de la Fuente-Nunez, Cesar Coelho, Luis Pedro bioRxiv Article Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, the majority of which were previously unknown. We observed that AMP production varies by habitat, with animal-associated samples displaying the highest proportion of AMPs compared to other habitats. Furthermore, within different human-associated microbiota, strain-level differences were evident. To validate our predictions, we synthesized and experimentally tested 50 AMPs, demonstrating their efficacy against clinically relevant drug-resistant pathogens both in vitro and in vivo. These AMPs exhibited antibacterial activity by targeting the bacterial membrane. Additionally, AMPSphere provides valuable insights into the evolutionary origins of peptides. In conclusion, our approach identified AMP sequences within prokaryotic microbiomes, opening up new avenues for the discovery of antibiotics. Cold Spring Harbor Laboratory 2023-09-11 /pmc/articles/PMC10491242/ /pubmed/37693522 http://dx.doi.org/10.1101/2023.08.31.555663 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Santos-Júnior, Célio Dias Der Torossian Torres, Marcelo Duan, Yiqian del Río, Álvaro Rodríguez Schmidt, Thomas S.B. Chong, Hui Fullam, Anthony Kuhn, Michael Zhu, Chengkai Houseman, Amy Somborski, Jelena Vines, Anna Zhao, Xing-Ming Bork, Peer Huerta-Cepas, Jaime de la Fuente-Nunez, Cesar Coelho, Luis Pedro Computational exploration of the global microbiome for antibiotic discovery |
title | Computational exploration of the global microbiome for antibiotic discovery |
title_full | Computational exploration of the global microbiome for antibiotic discovery |
title_fullStr | Computational exploration of the global microbiome for antibiotic discovery |
title_full_unstemmed | Computational exploration of the global microbiome for antibiotic discovery |
title_short | Computational exploration of the global microbiome for antibiotic discovery |
title_sort | computational exploration of the global microbiome for antibiotic discovery |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491242/ https://www.ncbi.nlm.nih.gov/pubmed/37693522 http://dx.doi.org/10.1101/2023.08.31.555663 |
work_keys_str_mv | AT santosjuniorceliodias computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery AT dertorossiantorresmarcelo computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery AT duanyiqian computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery AT delrioalvarorodriguez computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery AT schmidtthomassb computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery AT chonghui computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery AT fullamanthony computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery AT kuhnmichael computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery AT zhuchengkai computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery AT housemanamy computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery AT somborskijelena computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery AT vinesanna computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery AT zhaoxingming computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery AT borkpeer computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery AT huertacepasjaime computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery AT delafuentenunezcesar computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery AT coelholuispedro computationalexplorationoftheglobalmicrobiomeforantibioticdiscovery |