Cargando…
An optical-based multipoint 3-axis pressure sensor with a flexible thin-film form
Multipoint 3-axis tactile pressure sensing by a high-resolution and sensitive optical system provides rich information on surface pressure distribution and plays an important role in a variety of human interaction–related and robotics applications. However, the optical system usually has a bulky pro...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491291/ https://www.ncbi.nlm.nih.gov/pubmed/37683001 http://dx.doi.org/10.1126/sciadv.adi2445 |
Sumario: | Multipoint 3-axis tactile pressure sensing by a high-resolution and sensitive optical system provides rich information on surface pressure distribution and plays an important role in a variety of human interaction–related and robotics applications. However, the optical system usually has a bulky profile, which brings difficulties to sensor mounting and system integration. Here, we show a construction of thin-film and flexible multipoint 3-axis pressure sensor by optical methods. The sensor can detect the distribution of 3-axis pressure on an area of 3 centimeter by 4 centimeter, with a high-accuracy normal and tangential pressure sensing up to 360 and 100 kilopascal, respectively. A porous rubber is used as a 3-axis pressure-sensitive optical modulator to omit the thick and rigid focusing system without sacrificing the sensitivity. In addition, by integrating thin and flexible backlight and imager, the sensor has a total thickness of 1.5 milimeter, making it function properly even when bent to a radius of 18 milimeter. |
---|