Cargando…
Learned Full Waveform Inversion Incorporating Task Information for Ultrasound Computed Tomography
Ultrasound computed tomography (USCT) is an emerging imaging modality that holds great promise for breast imaging. Full-waveform inversion (FWI)-based image reconstruction methods incorporate accurate wave physics to produce high spatial resolution quantitative images of speed of sound or other acou...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491310/ |
_version_ | 1785104034043002880 |
---|---|
author | Lozenski, Luke Wang, Hanchen Li, Fu Anastasio, Mark Wohlberg, Brendt Lin, Youzuo Villa, Umberto |
author_facet | Lozenski, Luke Wang, Hanchen Li, Fu Anastasio, Mark Wohlberg, Brendt Lin, Youzuo Villa, Umberto |
author_sort | Lozenski, Luke |
collection | PubMed |
description | Ultrasound computed tomography (USCT) is an emerging imaging modality that holds great promise for breast imaging. Full-waveform inversion (FWI)-based image reconstruction methods incorporate accurate wave physics to produce high spatial resolution quantitative images of speed of sound or other acoustic properties of the breast tissues from USCT measurement data. However, the high computational cost of FWI reconstruction represents a significant burden for its widespread application in a clinical setting. The research reported here investigates the use of a convolutional neural network (CNN) to learn a mapping from USCT waveform data to speed of sound estimates. The CNN was trained using a supervised approach with a task-informed loss function aiming at preserving features of the image that are relevant to the detection of lesions. A large set of anatomically and physiologically realistic numerical breast phantoms (NBPs) and corresponding simulated USCT measurements was employed during training. Once trained, the CNN can perform real-time FWI image reconstruction from USCT waveform data. The performance of the proposed method was assessed and compared against FWI using a hold-out sample of 41 NBPs and corresponding USCT data. Accuracy was measured using relative mean square error (RMSE), structural self-similarity index measure (SSIM), and lesion detection performance (DICE score). This numerical experiment demonstrates that a supervised learning model can achieve accuracy comparable to FWI in terms of RMSE and SSIM, and better performance in terms of task performance, while significantly reducing computational time. |
format | Online Article Text |
id | pubmed-10491310 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cornell University |
record_format | MEDLINE/PubMed |
spelling | pubmed-104913102023-09-09 Learned Full Waveform Inversion Incorporating Task Information for Ultrasound Computed Tomography Lozenski, Luke Wang, Hanchen Li, Fu Anastasio, Mark Wohlberg, Brendt Lin, Youzuo Villa, Umberto ArXiv Article Ultrasound computed tomography (USCT) is an emerging imaging modality that holds great promise for breast imaging. Full-waveform inversion (FWI)-based image reconstruction methods incorporate accurate wave physics to produce high spatial resolution quantitative images of speed of sound or other acoustic properties of the breast tissues from USCT measurement data. However, the high computational cost of FWI reconstruction represents a significant burden for its widespread application in a clinical setting. The research reported here investigates the use of a convolutional neural network (CNN) to learn a mapping from USCT waveform data to speed of sound estimates. The CNN was trained using a supervised approach with a task-informed loss function aiming at preserving features of the image that are relevant to the detection of lesions. A large set of anatomically and physiologically realistic numerical breast phantoms (NBPs) and corresponding simulated USCT measurements was employed during training. Once trained, the CNN can perform real-time FWI image reconstruction from USCT waveform data. The performance of the proposed method was assessed and compared against FWI using a hold-out sample of 41 NBPs and corresponding USCT data. Accuracy was measured using relative mean square error (RMSE), structural self-similarity index measure (SSIM), and lesion detection performance (DICE score). This numerical experiment demonstrates that a supervised learning model can achieve accuracy comparable to FWI in terms of RMSE and SSIM, and better performance in terms of task performance, while significantly reducing computational time. Cornell University 2023-08-30 /pmc/articles/PMC10491310/ Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Lozenski, Luke Wang, Hanchen Li, Fu Anastasio, Mark Wohlberg, Brendt Lin, Youzuo Villa, Umberto Learned Full Waveform Inversion Incorporating Task Information for Ultrasound Computed Tomography |
title | Learned Full Waveform Inversion Incorporating Task Information for Ultrasound Computed Tomography |
title_full | Learned Full Waveform Inversion Incorporating Task Information for Ultrasound Computed Tomography |
title_fullStr | Learned Full Waveform Inversion Incorporating Task Information for Ultrasound Computed Tomography |
title_full_unstemmed | Learned Full Waveform Inversion Incorporating Task Information for Ultrasound Computed Tomography |
title_short | Learned Full Waveform Inversion Incorporating Task Information for Ultrasound Computed Tomography |
title_sort | learned full waveform inversion incorporating task information for ultrasound computed tomography |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491310/ |
work_keys_str_mv | AT lozenskiluke learnedfullwaveforminversionincorporatingtaskinformationforultrasoundcomputedtomography AT wanghanchen learnedfullwaveforminversionincorporatingtaskinformationforultrasoundcomputedtomography AT lifu learnedfullwaveforminversionincorporatingtaskinformationforultrasoundcomputedtomography AT anastasiomark learnedfullwaveforminversionincorporatingtaskinformationforultrasoundcomputedtomography AT wohlbergbrendt learnedfullwaveforminversionincorporatingtaskinformationforultrasoundcomputedtomography AT linyouzuo learnedfullwaveforminversionincorporatingtaskinformationforultrasoundcomputedtomography AT villaumberto learnedfullwaveforminversionincorporatingtaskinformationforultrasoundcomputedtomography |