Cargando…

Key variants via Alzheimer’s Disease Sequencing Project whole genome sequence data

INTRODUCTION: Genome-wide association studies (GWAS) have identified loci associated with Alzheimer’s disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yanbing, Sarnowski, Chloé, Lin, Honghuang, Pitsillides, Achilleas N, Heard-Costa, Nancy L, Choi, Seung Hoan, Wang, Dongyu, Bis, Joshua C, Blue, Elizabeth E, Boerwinkle, Eric, De Jager, Philip L, Fornage, Myriam, Wijsman, Ellen M, Seshadri, Sudha, Dupuis, Josée, Peloso, Gina M, DeStefano, Anita L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491364/
https://www.ncbi.nlm.nih.gov/pubmed/37693453
http://dx.doi.org/10.1101/2023.08.28.23294631
_version_ 1785104045390692352
author Wang, Yanbing
Sarnowski, Chloé
Lin, Honghuang
Pitsillides, Achilleas N
Heard-Costa, Nancy L
Choi, Seung Hoan
Wang, Dongyu
Bis, Joshua C
Blue, Elizabeth E
Boerwinkle, Eric
De Jager, Philip L
Fornage, Myriam
Wijsman, Ellen M
Seshadri, Sudha
Dupuis, Josée
Peloso, Gina M
DeStefano, Anita L
author_facet Wang, Yanbing
Sarnowski, Chloé
Lin, Honghuang
Pitsillides, Achilleas N
Heard-Costa, Nancy L
Choi, Seung Hoan
Wang, Dongyu
Bis, Joshua C
Blue, Elizabeth E
Boerwinkle, Eric
De Jager, Philip L
Fornage, Myriam
Wijsman, Ellen M
Seshadri, Sudha
Dupuis, Josée
Peloso, Gina M
DeStefano, Anita L
author_sort Wang, Yanbing
collection PubMed
description INTRODUCTION: Genome-wide association studies (GWAS) have identified loci associated with Alzheimer’s disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS: We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases=2,184, N controls=2,383) and targeted analyses in sub-populations using WGS data from the Alzheimer’s Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS: Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION: This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS.
format Online
Article
Text
id pubmed-10491364
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-104913642023-09-09 Key variants via Alzheimer’s Disease Sequencing Project whole genome sequence data Wang, Yanbing Sarnowski, Chloé Lin, Honghuang Pitsillides, Achilleas N Heard-Costa, Nancy L Choi, Seung Hoan Wang, Dongyu Bis, Joshua C Blue, Elizabeth E Boerwinkle, Eric De Jager, Philip L Fornage, Myriam Wijsman, Ellen M Seshadri, Sudha Dupuis, Josée Peloso, Gina M DeStefano, Anita L medRxiv Article INTRODUCTION: Genome-wide association studies (GWAS) have identified loci associated with Alzheimer’s disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS: We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases=2,184, N controls=2,383) and targeted analyses in sub-populations using WGS data from the Alzheimer’s Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS: Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION: This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS. Cold Spring Harbor Laboratory 2023-08-29 /pmc/articles/PMC10491364/ /pubmed/37693453 http://dx.doi.org/10.1101/2023.08.28.23294631 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Wang, Yanbing
Sarnowski, Chloé
Lin, Honghuang
Pitsillides, Achilleas N
Heard-Costa, Nancy L
Choi, Seung Hoan
Wang, Dongyu
Bis, Joshua C
Blue, Elizabeth E
Boerwinkle, Eric
De Jager, Philip L
Fornage, Myriam
Wijsman, Ellen M
Seshadri, Sudha
Dupuis, Josée
Peloso, Gina M
DeStefano, Anita L
Key variants via Alzheimer’s Disease Sequencing Project whole genome sequence data
title Key variants via Alzheimer’s Disease Sequencing Project whole genome sequence data
title_full Key variants via Alzheimer’s Disease Sequencing Project whole genome sequence data
title_fullStr Key variants via Alzheimer’s Disease Sequencing Project whole genome sequence data
title_full_unstemmed Key variants via Alzheimer’s Disease Sequencing Project whole genome sequence data
title_short Key variants via Alzheimer’s Disease Sequencing Project whole genome sequence data
title_sort key variants via alzheimer’s disease sequencing project whole genome sequence data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491364/
https://www.ncbi.nlm.nih.gov/pubmed/37693453
http://dx.doi.org/10.1101/2023.08.28.23294631
work_keys_str_mv AT wangyanbing keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT sarnowskichloe keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT linhonghuang keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT pitsillidesachilleasn keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT heardcostanancyl keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT choiseunghoan keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT wangdongyu keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT bisjoshuac keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT blueelizabethe keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT boerwinkleeric keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT dejagerphilipl keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT fornagemyriam keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT wijsmanellenm keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT seshadrisudha keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT dupuisjosee keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT pelosoginam keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT destefanoanital keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata
AT keyvariantsviaalzheimersdiseasesequencingprojectwholegenomesequencedata