Cargando…
A comparison of large language model versus manual chart review for extraction of data elements from the electronic health record
IMPORTANCE: Large language models (LLMs) have proven useful for extracting data from publicly available sources, but their uses in clinical settings and with clinical data are unknown. OBJECTIVE: To determine the accuracy of data extraction using “Versa Chat,” a chat implementation of the general-pu...
Autores principales: | Ge, Jin, Li, Michael, Delk, Molly B., Lai, Jennifer C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491368/ https://www.ncbi.nlm.nih.gov/pubmed/37693398 http://dx.doi.org/10.1101/2023.08.31.23294924 |
Ejemplares similares
-
A large language model for electronic health records
por: Yang, Xi, et al.
Publicado: (2022) -
The Cost of Manual Charting
por: Clarke, Becky
Publicado: (2013) -
The shaky foundations of large language models and foundation models for electronic health records
por: Wornow, Michael, et al.
Publicado: (2023) -
Harnessing the Power of Large Language Models (LLMs) for Electronic Health Records (EHRs) Optimization
por: Nashwan, Abdulqadir J, et al.
Publicado: (2023) -
A Large Language Model-Based Generative Natural Language Processing Framework Finetuned on Clinical Notes Accurately Extracts Headache Frequency from Electronic Health Records
por: Chiang, Chia-Chun, et al.
Publicado: (2023)