Cargando…
Lightweight forest smoke and fire detection algorithm based on improved YOLOv5
Smoke and fire detection technology is a key technology for automatically realizing forest monitoring and forest fire warning. One of the most popular algorithms for object detection tasks is YOLOv5. However, it suffers from some challenges, such as high computational load and limited detection perf...
Autores principales: | Yang, Jie, Zhu, Wenchao, Sun, Ting, Ren, Xiaojun, Liu, Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491403/ https://www.ncbi.nlm.nih.gov/pubmed/37683034 http://dx.doi.org/10.1371/journal.pone.0291359 |
Ejemplares similares
-
Swin-YOLOv5: Research and Application of Fire and Smoke Detection Algorithm Based on YOLOv5
por: Zhang, Shangjie Ge, et al.
Publicado: (2022) -
Lightweight Algorithm for Apple Detection Based on an Improved YOLOv5 Model
por: Sun, Yu, et al.
Publicado: (2023) -
Lightweight aerial image object detection algorithm based on improved YOLOv5s
por: Deng, Lixia, et al.
Publicado: (2023) -
Lightweight Helmet Detection Algorithm Using an Improved YOLOv4 †
por: Chen, Junhua, et al.
Publicado: (2023) -
An Improved YOLOv7 Lightweight Detection Algorithm for Obscured Pedestrians
por: Li, Chang, et al.
Publicado: (2023)