Cargando…
Switching state-space modeling of neural signal dynamics
Linear parametric state-space models are a ubiquitous tool for analyzing neural time series data, providing a way to characterize the underlying brain dynamics with much greater statistical efficiency than non-parametric data analysis approaches. However, neural time series data are frequently time-...
Autores principales: | He, Mingjian, Das, Proloy, Hotan, Gladia, Purdon, Patrick L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491408/ https://www.ncbi.nlm.nih.gov/pubmed/37639391 http://dx.doi.org/10.1371/journal.pcbi.1011395 |
Ejemplares similares
-
Broadband slow-wave modulation in posterior and anterior cortex tracks distinct states of propofol-induced unconsciousness
por: Stephen, Emily P., et al.
Publicado: (2020) -
Progressive multifocal leukoencephalopathy: A 25-year retrospective cohort study
por: Anand, Pria, et al.
Publicado: (2019) -
State space methods for phase amplitude coupling analysis
por: Soulat, Hugo, et al.
Publicado: (2022) -
Light therapy for multiple sclerosis-associated fatigue: Study protocol for a randomized controlled trial
por: Mateen, Farrah J., et al.
Publicado: (2017) -
State-space models with regime switching : classical and Gibbs-sampling approaches with applications /
por: Kim, Chang-Jin, 1960-
Publicado: (1999)