Cargando…

Comparison of image quality of 3D ultrasound: motorized acquisition versus freehand navigated acquisition, a phantom study

PURPOSE: Intra-operative assessment of resection margins during oncological surgery is a field that needs improvement. Ultrasound (US) shows the potential to fulfill this need, but this imaging technique is highly operator-dependent. A 3D US image of the whole specimen may remedy the operator depend...

Descripción completa

Detalles Bibliográficos
Autores principales: Bekedam, N. M., Karssemakers, L. H. E., van Alphen, M. J. A., van Veen, R. L. P., Smeele, L. E., Karakullukcu, M. B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491552/
https://www.ncbi.nlm.nih.gov/pubmed/37243918
http://dx.doi.org/10.1007/s11548-023-02934-x
Descripción
Sumario:PURPOSE: Intra-operative assessment of resection margins during oncological surgery is a field that needs improvement. Ultrasound (US) shows the potential to fulfill this need, but this imaging technique is highly operator-dependent. A 3D US image of the whole specimen may remedy the operator dependence. This study aims to compare and evaluate the image quality of 3D US between freehand acquisition (FA) and motorized acquisition (MA). METHODS: Multiple 3D US volumes of a commercial phantom were acquired in motorized and freehand fashion. FA images were collected with electromagnetic navigation. An integrated algorithm reconstructed the FA images. MA images were stacked into a 3D volume. The image quality is evaluated following the metrics: contrast resolution, axial and elevation resolution, axial and elevation distance calibration, stability, inter-operator variability, and intra-operator variability. A linear mixed model determined statistical differences between FA and MA for these metrics. RESULTS: The MA results in a statistically significant lower error of axial distance calibration (p < 0.0001) and higher stability (p < 0.0001) than FA. On the other hand, the FA has a better elevation resolution (p < 0.003) than the MA. CONCLUSION: MA results in better image quality of 3D US than the FA method based on axial distance calibration, stability, and variability. This study suggests acquiring 3D US volumes for intra-operative ex vivo margin assessment in a motorized fashion.