Cargando…
Automated recognition of epilepsy from EEG signals using a combining space–time algorithm of CNN-LSTM
Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research. Electroencephalogram (EEG) signals exhibit better temporal characteristics in the detection of epilepsy compared to radiation medical images like computed...
Autores principales: | Wang, Xiashuang, Wang, Yinglei, Liu, Dunwei, Wang, Ying, Wang, Zhengjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491650/ https://www.ncbi.nlm.nih.gov/pubmed/37684278 http://dx.doi.org/10.1038/s41598-023-41537-z |
Ejemplares similares
-
EEG-based emotion recognition using hybrid CNN and LSTM classification
por: Chakravarthi, Bhuvaneshwari, et al.
Publicado: (2022) -
A Hybrid CNN–LSTM Algorithm for Online Defect Recognition of CO(2) Welding
por: Liu, Tianyuan, et al.
Publicado: (2018) -
Automated Recognition of Epileptic EEG States Using a Combination of Symlet Wavelet Processing, Gradient Boosting Machine, and Grid Search Optimizer
por: Wang, Xiashuang, et al.
Publicado: (2019) -
Personality-Based Emotion Recognition Using EEG Signals with a CNN-LSTM Network
por: Hosseini, Mohammad Saleh Khajeh, et al.
Publicado: (2023) -
CL-ACP: a parallel combination of CNN and LSTM anticancer peptide recognition model
por: Wang, Huiqing, et al.
Publicado: (2021)