Cargando…
Learning hyperparameter predictors for similarity-based multidisciplinary topology optimization
Topology optimization (TO) plays a significant role in industry by providing engineers with optimal material distributions based exclusively on the information about the design space and loading conditions. Such approaches are especially important for current multidisciplinary design tasks in indust...
Autores principales: | Bujny, Mariusz, Yousaf, Muhammad Salman, Zurbrugg, Nathan, Detwiler, Duane, Menzel, Stefan, Ramnath, Satchit, Rios, Thiago, Duddeck, Fabian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491651/ https://www.ncbi.nlm.nih.gov/pubmed/37684319 http://dx.doi.org/10.1038/s41598-023-42009-0 |
Ejemplares similares
-
An Optimized Hyperparameter of Convolutional Neural Network Algorithm for Bug Severity Prediction in Alzheimer's-Based IoT System
por: Yousaf, Iqra, et al.
Publicado: (2022) -
Parsimonious Optimization of Multitask Neural Network Hyperparameters
por: Valsecchi, Cecile, et al.
Publicado: (2021) -
Learning the Effect of Registration Hyperparameters with HyperMorph
por: Hoopes, Andrew, et al.
Publicado: (2022) -
A Hyperparameter Tuning Approach for an Online Log Parser
por: Marlaithong, Tinnakorn, et al.
Publicado: (2021) -
Robust optimization of SVM hyperparameters in the classification of bioactive compounds
por: Czarnecki, Wojciech M, et al.
Publicado: (2015)