Cargando…
A review of the machine learning datasets in mammography, their adherence to the FAIR principles and the outlook for the future
The increasing rates of breast cancer, particularly in emerging economies, have led to interest in scalable deep learning-based solutions that improve the accuracy and cost-effectiveness of mammographic screening. However, such tools require large volumes of high-quality training data, which can be...
Autores principales: | Logan, Joe, Kennedy, Paul J., Catchpoole, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491669/ https://www.ncbi.nlm.nih.gov/pubmed/37684306 http://dx.doi.org/10.1038/s41597-023-02430-6 |
Ejemplares similares
-
Implementing machine learning in medicine
por: Verma, Amol A., et al.
Publicado: (2021) -
A dataset for assessing phytolith data for implementation of the FAIR data principles
por: Kerfant, Céline, et al.
Publicado: (2023) -
Operationalizing the CARE and FAIR Principles for Indigenous data futures
por: Carroll, Stephanie Russo, et al.
Publicado: (2021) -
Problems in the deployment of machine-learned models in health care
por: Cohen, Joseph Paul, et al.
Publicado: (2021) -
Global health security and the health-security nexus: principles, politics and praxis
por: McCoy, David, et al.
Publicado: (2023)