Cargando…
TRandAugment: temporal random augmentation strategy for surgical activity recognition from videos
PURPOSE: Automatic recognition of surgical activities from intraoperative surgical videos is crucial for developing intelligent support systems for computer-assisted interventions. Current state-of-the-art recognition methods are based on deep learning where data augmentation has shown the potential...
Autores principales: | Ramesh, Sanat, Dall’Alba, Diego, Gonzalez, Cristians, Yu, Tong, Mascagni, Pietro, Mutter, Didier, Marescaux, Jacques, Fiorini, Paolo, Padoy, Nicolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491694/ https://www.ncbi.nlm.nih.gov/pubmed/36944845 http://dx.doi.org/10.1007/s11548-023-02864-8 |
Ejemplares similares
-
Multi-task temporal convolutional networks for joint recognition of surgical phases and steps in gastric bypass procedures
por: Ramesh, Sanat, et al.
Publicado: (2021) -
Preserving privacy in surgical video analysis using a deep learning classifier to identify out-of-body scenes in endoscopic videos
por: Lavanchy, Joël L., et al.
Publicado: (2023) -
Proposal and multicentric validation of a laparoscopic Roux-en-Y gastric bypass surgery ontology
por: Lavanchy, Joël L., et al.
Publicado: (2022) -
Augmented Reality and Image-Guided Robotic Liver Surgery
por: Giannone, Fabio, et al.
Publicado: (2021) -
Automatic detection of procedural knowledge in robotic-assisted surgical texts
por: Bombieri, Marco, et al.
Publicado: (2021)