Cargando…
Prediction of lung papillary adenocarcinoma-specific survival using ensemble machine learning models
Accurate prognostic prediction is crucial for treatment decision-making in lung papillary adenocarcinoma (LPADC). The aim of this study was to predict cancer-specific survival in LPADC using ensemble machine learning and classical Cox regression models. Moreover, models were evaluated to provide rec...
Autores principales: | Xia, Kaide, Chen, Dinghua, Jin, Shuai, Yi, Xinglin, Luo, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491759/ https://www.ncbi.nlm.nih.gov/pubmed/37684259 http://dx.doi.org/10.1038/s41598-023-40779-1 |
Ejemplares similares
-
A deep learning algorithm with good prediction efficacy for cancer-specific survival in osteosarcoma: A retrospective study
por: Liu, Yang, et al.
Publicado: (2023) -
Predicting lung adenocarcinoma disease progression using methylation-correlated blocks and ensemble machine learning classifiers
por: Yu, Xin, et al.
Publicado: (2021) -
Using machine learning and an ensemble of methods to predict kidney transplant survival
por: Mark, Ethan, et al.
Publicado: (2019) -
Association of specific gene mutations derived from machine learning with survival in lung adenocarcinoma
por: Cho, Han-Jun, et al.
Publicado: (2018) -
Machine learning models for predicting survival in patients with ampullary adenocarcinoma
por: Huang, Tao, et al.
Publicado: (2022)