Cargando…
A neighborhood-regularization method leveraging multiview data for predicting the frequency of drug–side effects
MOTIVATION: A critical issue in drug benefit-risk assessment is to determine the frequency of side effects, which is performed by randomized controlled trails. Computationally predicted frequencies of drug side effects can be used to effectively guide the randomized controlled trails. However, it is...
Autores principales: | Wang, Lin, Sun, Chenhao, Xu, Xianyu, Li, Jia, Zhang, Wenjuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491955/ https://www.ncbi.nlm.nih.gov/pubmed/37647657 http://dx.doi.org/10.1093/bioinformatics/btad532 |
Ejemplares similares
-
Multiview machine learning for data analysis
por: Sun, Shiliang, et al.
Publicado: (2019) -
Online Coregularization for Multiview Semisupervised Learning
por: Sun, Boliang, et al.
Publicado: (2013) -
Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction
por: Liu, Yong, et al.
Publicado: (2016) -
MFDA: Multiview fusion based on dual-level attention for drug interaction prediction
por: Lin, Kaibiao, et al.
Publicado: (2022) -
Multiview Deep Forest for Overall Survival Prediction in Cancer
por: Li, Qiucen, et al.
Publicado: (2023)