Cargando…
Mitigating underreported error in food frequency questionnaire data using a supervised machine learning method and error adjustment algorithm
BACKGROUND: Food frequency questionnaires (FFQs) are one of the most useful tools for studying and understanding diet-disease relationships. However, because FFQs are self-reported data, they are susceptible to response bias, social desirability bias, and misclassification. Currently, several method...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492312/ https://www.ncbi.nlm.nih.gov/pubmed/37689645 http://dx.doi.org/10.1186/s12911-023-02262-9 |