Cargando…
Mitigating underreported error in food frequency questionnaire data using a supervised machine learning method and error adjustment algorithm
BACKGROUND: Food frequency questionnaires (FFQs) are one of the most useful tools for studying and understanding diet-disease relationships. However, because FFQs are self-reported data, they are susceptible to response bias, social desirability bias, and misclassification. Currently, several method...
Autores principales: | Popoola, Anjolaoluwa Ayomide, Frediani, Jennifer Koren, Hartman, Terryl Johnson, Paynabar, Kamran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492312/ https://www.ncbi.nlm.nih.gov/pubmed/37689645 http://dx.doi.org/10.1186/s12911-023-02262-9 |
Ejemplares similares
-
A Review of Medication Errors in Iran: Sources, Underreporting Reasons and Preventive Measures
por: Mansouri, Ava, et al.
Publicado: (2014) -
Post-Error Adjustments
por: Danielmeier, Claudia, et al.
Publicado: (2011) -
First Error-Based Supervised Learning Algorithm for Spiking Neural Networks
por: Luo, Xiaoling, et al.
Publicado: (2019) -
Error and Error Mitigation in Low-Coverage Genome Assemblies
por: Hubisz, Melissa J., et al.
Publicado: (2011) -
An Efficient NLOS Errors Mitigation Algorithm for TOA-Based Localization
por: Zou, Yanbin, et al.
Publicado: (2020)