Cargando…
A deep learning model for rapid classification of tea coal disease
BACKGROUND: The common tea tree disease known as “tea coal disease” (Neocapnodium theae Hara) can have a negative impact on tea yield and quality. The majority of conventional approaches for identifying tea coal disease rely on observation with the human naked eye, which is labor- and time-intensive...
Autores principales: | Xu, Yang, Mao, Yilin, Li, He, Sun, Litao, Wang, Shuangshuang, Li, Xiaojiang, Shen, Jiazhi, Yin, Xinyue, Fan, Kai, Ding, Zhaotang, Wang, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492339/ https://www.ncbi.nlm.nih.gov/pubmed/37689676 http://dx.doi.org/10.1186/s13007-023-01074-2 |
Ejemplares similares
-
Different changes of bacterial diversity and soil metabolites in tea plants-legume intercropping systems
por: Wang, Shuangshuang, et al.
Publicado: (2023) -
Low temperature response index for monitoring freezing injury of tea plant
por: Mao, Yilin, et al.
Publicado: (2023) -
Dynamic changes in metabolic and lipidomic profiles of tea plants during drought stress and re-watering
por: Shen, Jiazhi, et al.
Publicado: (2022) -
Metabolic Variations among Three New Tea Varieties Cultivated in Shandong, China
por: Shen, Jiazhi, et al.
Publicado: (2023) -
Improved phyllosphere microbiome composition of tea plant with the application of small peptides in combination with rhamnolipid
por: Chen, Hao, et al.
Publicado: (2023)