Cargando…

Detection of Merkel cell polyomavirus in multiple primary oral squamous cell carcinomas

Oral microbiome studies have mainly focussed on bacteria, with the relationship between viruses and oral cancers remaining poorly understood. Oral cancers can develop even in the absence of any history of daily smoking or drinking. Oral cancer patients frequently have multiple primary cancers in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Kitamura, Naoya, Hashida, Yumiko, Higuchi, Tomonori, Ohno, Seiji, Sento, Shinya, Sasabe, Eri, Murakami, Ichiro, Yamamoto, Tetsuya, Daibata, Masanori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492774/
https://www.ncbi.nlm.nih.gov/pubmed/36964865
http://dx.doi.org/10.1007/s10266-023-00807-y
Descripción
Sumario:Oral microbiome studies have mainly focussed on bacteria, with the relationship between viruses and oral cancers remaining poorly understood. Oral cancers can develop even in the absence of any history of daily smoking or drinking. Oral cancer patients frequently have multiple primary cancers in the oral cavity and other organs, such as the upper gastrointestinal tract. Merkel cell polyomavirus (MCPyV) is a novel oncovirus identified from a subtype of skin cancer in 2008. In this study, we investigated the potential involvement of MCPyV in the pathogenesis of oral squamous cell carcinoma (OSCC). Participants comprised 115 Japanese patients with OSCC (single primary: 109 tumours in 109 patients; multiple primaries: 16 tumours in 6 patients) treated in our department between 2014 and 2017. DNA was extracted from formalin-fixed paraffin-embedded specimens of primary lesions. MCPyV DNA copy counts were analysed by quantitative real-time polymerase chain reaction. Twenty-four of the 115 patients (20.9%) were positive for MCPyV DNA. No association was found between presence or absence of MCPyV DNA and clinical characteristics other than number of primary lesions. The MCPyV DNA-positive rate was significantly higher for multiple primary OSCCs (62.5%, 10/16 tumours) than for single primary OSCCs (16.5%, 18/109 tumours; P < 0.001). Furthermore, MCPyV DNA load was significantly higher for patients with multiple primaries (P < 0.05). MCPyV was observed more frequently and DNA load was significantly higher with multiple primary OSCCs than with single primary OSCC. MCPyV may play some role as an oncovirus for multiple primary OSCCs.