Cargando…
Learning and predicting the unknown class using evidential deep learning
In practical deep-learning applications, such as medical image analysis, autonomous driving, and traffic simulation, the uncertainty of a classification model’s output is critical. Evidential deep learning (EDL) can output this uncertainty for the prediction; however, its accuracy depends on a user-...
Autor principal: | Nagahama, Akihito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492799/ https://www.ncbi.nlm.nih.gov/pubmed/37689788 http://dx.doi.org/10.1038/s41598-023-40649-w |
Ejemplares similares
-
Evidential deep learning for trustworthy prediction of enzyme commission number
por: Han, So-Ra, et al.
Publicado: (2023) -
Evidential Deep Learning for Guided Molecular Property
Prediction and Discovery
por: Soleimany, Ava P., et al.
Publicado: (2021) -
Augmenting Deep Learning Performance in an Evidential Multiple Classifier System
por: Vandoni, Jennifer, et al.
Publicado: (2019) -
Compact Belief Rule Base Learning for Classification with Evidential Clustering †
por: Jiao, Lianmeng, et al.
Publicado: (2019) -
Region-based evidential deep learning to quantify uncertainty and improve robustness of brain tumor segmentation
por: Li, Hao, et al.
Publicado: (2022)