Cargando…
Adapting the pre-trained convolutional neural networks to improve the anomaly detection and classification in mammographic images
Mortality from breast cancer (BC) is among the top causes of cancer death in women. BC can be effectively treated when diagnosed early, improving the likelihood that a patient will survive. BC masses and calcification clusters must be identified by mammography in order to prevent disease effects and...
Autores principales: | Saber, Abeer, Hussien, Abdelazim G., Awad, Wael A., Mahmoud, Amena, Allakany, Alaa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492817/ https://www.ncbi.nlm.nih.gov/pubmed/37689757 http://dx.doi.org/10.1038/s41598-023-41633-0 |
Ejemplares similares
-
Evaluating the Performance of Pre-Trained Convolutional Neural Network for Audio Classification on Embedded Systems for Anomaly Detection in Smart Cities
por: Lamrini, Mimoun, et al.
Publicado: (2023) -
Breast lesions classifications of mammographic images using a deep convolutional neural network-based approach
por: Mahmood, Tariq, et al.
Publicado: (2022) -
BI-RADS-Based Classification of Mammographic Soft Tissue Opacities Using a Deep Convolutional Neural Network
por: Sabani, Albin, et al.
Publicado: (2022) -
Enhancing Security in ZigBee Wireless Sensor Networks: A New Approach and Mutual Authentication Scheme for D2D Communication
por: Allakany, Alaa, et al.
Publicado: (2023) -
A Technical Review of Convolutional Neural Network-Based Mammographic Breast Cancer Diagnosis
por: Zou, Lian, et al.
Publicado: (2019)